DISCUSSION PAPER SERIES

DP13826

THE EFFECTS OF WORKING WHILE IN SCHOOL: EVIDENCE FROM URUGUAYAN LOTTERIES

Thomas Le Barbanchon, Diego Ubfal and Federico Araya

DEVELOPMENT ECONOMICS AND LABOUR ECONOMICS

THE EFFECTS OF WORKING WHILE IN SCHOOL: EVIDENCE FROM URUGUAYAN LOTTERIES

Thomas Le Barbanchon, Diego Ubfal and Federico Araya

Discussion Paper DP13826 Published 27 June 2019 Submitted 11 June 2019

Centre for Economic Policy Research 33 Great Sutton Street, London EC1V 0DX, UK Tel: +44 (0)20 7183 8801 www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programme in **DEVELOPMENT ECONOMICS AND LABOUR ECONOMICS**. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Thomas Le Barbanchon, Diego Ubfal and Federico Araya

THE EFFECTS OF WORKING WHILE IN SCHOOL: EVIDENCE FROM URUGUAYAN LOTTERIES

Abstract

We provide the first estimates of the effects of working while in school that use controlled random variation in job offers. We leverage a Uruguayan program offering 9-to-12-month part-time employment in state-owned companies by lottery to enrolled students. Using social security data matched to the universe of over 120,000 applicants, we estimate a 9% increase in earnings over the four post-program years for youth completing a program job. We find large positive effects on school enrollment during the program year, consistent with the conditionality of the program and smaller effects in the post-program years. Our time-use survey indicates that students substitute leisure and household chores with work, without significant reductions in studying time. Finally, a decomposition of the earnings effect shows that accumulation of work experience can explain the majority of the increase in earnings.

JEL Classification: J08, J22, J24, I21, I28

Keywords: student employment, randomized lottery

Thomas Le Barbanchon - thomas.lebarbanchon@unibocconi.it *Bocconi University and CEPR*

Diego Ubfal - diego.ubfal@unibocconi.it Bocconi University

Federico Araya - faraya@mtss.gub.uy Uruguayan Ministry of Labor MTSS

The Effects of Working while in School: Evidence from Uruguayan Lotteries^{*}

Thomas Le Barbanchon (Bocconi University) Diego Ubfal (Bocconi University) Federico Araya (Uruguayan Ministry of Labor and Social Security)

May 27, 2019

Abstract

We provide the first estimates of the effects of working while in school that use controlled random variation in job offers. We leverage a Uruguayan program offering 9-to-12-month part-time employment in state-owned companies by lottery to enrolled students. Using social security data matched to the universe of over 120,000 applicants, we estimate a 9% increase in earnings over the four post-program years for youth completing a program job. We find large positive effects on school enrollment during the program year, consistent with the conditionality of the program and smaller effects in the post-program years. Our time-use survey indicates that students substitute leisure and household chores with work, without significant reductions in studying time. Finally, a decomposition of the earnings effect shows that accumulation of work experience can explain the majority of the increase in earnings.

Keywords: student employment, randomized lottery. **JEL Codes:** J08, J22, J24, I21, I28.

^{*}For very helpful comments, we thank Jerome Adda, Luc Behaghel, Pascaline Dupas, Simon Gorlach, Selim Gulesci, Carrie Huffaker, Eliana La Ferrara, Adriana Lleras-Muney, Marco Manacorda, Juan Pablo Martinez, David McKenzie, Oscar Mitnik, Michele Pellizzari, Chris Roth, Fernando Vega-Redondo, and seminar participants at AASLE, Bocconi, CERGE-EI, DONDENA, IHEID, IPA Research Gathering at Northwestern, LACEA and Tinbergen Institute. Niccolo Cattadori and Mariana Ferrer provided excellent research assistance. We are grateful to the Uruguayan Ministry of Labor and Social Security, ANEP, BPS and UDELAR for letting us access their data. We gratefully acknowledge financial support from J-PAL Skills for Youth Program (SYP) and LEAP. This project received ethical approval from the ethics committee of Bocconi University and was registered in the American Economic Associations registry (ID AEARCTR-0002287). Thomas Le Barbanchon is also affiliated at IGIER, CEPR, J-PAL and IZA; Diego Ubfal: J-PAL, IZA, IGIER and LEAP diego.ubfal@unibocconi.it. All remaining errors are our own.

1 Introduction

Should students work while they are enrolled in school? Among OECD countries, the share of students aged between 15 and 19 who were working in 2016 averaged 14%, but it ranged from less than 10% in countries such as France, Italy, Japan, Mexico, and Chile to more than 40% in Denmark, the Netherlands, and Switzerland.¹ While some countries have promoted policies encouraging youth to study without working (e.g., the Bolsa Familia conditional cash transfer program in Brazil), others have designed programs that encourage youth to work while in school (e.g., the School-to-Work Opportunities Act of 1994 in the United States). This disagreement among policy-makers calls for more evidence on the effects of working while in school. The empirical literature has not reached a consensus on these effects and lacks experimental estimates. Furthermore, economic theory provides ambiguous predictions on the effects of working while in school.

On the one hand, theory suggests that working while in school might smooth the school-to-work transition. Youth may acquire skills at work that cannot be obtained at school. These could be hard skills (e.g., knowing how to write business reports) and soft skills (e.g., teamwork, personality factors), either general or sector-specific (Heckman et al., 2006; Alfonsi et al., 2017; Adhvaryu et al., 2018). Similarly, early work experience can provide a signal to employers, revealing workers' productivity or motivation, which could be particularly relevant when school grades or diploma lack information on skill levels (Farber and Gibbons, 1996; Altonji and Pierret, 2001; Pallais, 2014). Furthermore, employment may provide students with funding to continue with their studies. On the other hand, work could subtract time from study, and unless youth manage to better organize their time, it may harm academic outcomes, reduce general human capital acquired at school, and make it more difficult to climb the job ladder after graduation (Eckstein and Wolpin, 1999).

Empirical papers aiming to resolve this ambiguity face the challenge of addressing students' selection into employment - an issue that typically confounds the effects of working while in school. We provide the first estimates that use randomized lotteries to address the selection issue. We leverage a large-scale youth employment program offered by lottery in Uruguay. The program targets students aged

¹We computed these statistics from OECD (2018). In the U.S. this share was 20% in 2016, and the average for Latin America was 16% in 2014 (CEPAL and OIT, 2017).

16 to 20 throughout the country, offering them a first formal work experience in the main state-owned companies (e.g., the government-owned electricity company, telecommunications company, national bank, etc.). Lottery winners receive an offer for a part-time job (between 20 and 30 hours a week) that lasts between 9 and 12 months and typically consists in a clerical position, in administration or operations, focused mainly on support tasks. Program participants are required to be enrolled at a high school or university at the moment of application and throughout the duration of the program.

The Uruguayan experiment represents a unique opportunity to learn about the effects of working while in school for several reasons. It has the features of a social experiment without suffering from common implementation issues (Rothstein and von Wachter, 2017).² First, offers to participate in the program are randomly allocated. Second, the program has been in place for the last six years and receives applications from a large sample of students (i.e., from more than one-third of all the students aged 16 to 20 in the country). This means that we study a program already at scale, limiting concerns about scaling-up small experiments (Banerjee et al., 2017). Third, the sample of applicants to the program is representative of the student population, including both poor and non-poor households, which implies that participation bias is a less relevant issue in our case (Czibor et al., 2019).

We use rich administrative data that allow us to recover the main outcomes for all applicants, reducing concerns about attrition. The data cover the universe of lottery participants, including 122,195 lottery applications. We observe all applicants' monthly earnings and social transfers in social security data from 2011 to 2017, and their enrollment in the registers of public schools and universities. We complement the administrative data with a survey measuring school grades, time use and soft skills at the end of the program year.

During the year of the program, earnings and the employment rate of treated youth more than double with respect to the control group.³ More importantly, we find a

²The program was not conceived as a social experiment, but it implemented lotteries to deal with a much larger number of applications than available vacancies. We started studying the program five years after its initial implementation.

³The main results are discussed in terms of treatment on the treated (ToT) effects and compared to the control complier mean (i.e., the mean for youth who would have participated in the program if they had won the program lottery). Take-up of treatment, defined as completing a program job, was 70%. Intention-To-Treat effects, presented in the appendix, draw a qualitatively similar picture.

significant and positive effect on yearly earnings and employment after the end of the program. Over the four years following the program, the post-program effect on earnings amounts to US\$285. This represents 9% of the earnings of comparable youth in the control group. Post-program earnings effects are driven by both effects on employment at the extensive margin (3 percentage points over a control complier mean of 70%), and by wage effects conditional on employment. Monthly wages of program participants employed during the post-program years are US\$26 higher - a 5% increase over the control complier mean. The positive effect on wages survives a bounding analysis that accounts for selection into employment, and suggests that working while in school increased youth productivity.

While treated youth acquire more work experience, they also acquire more education. During the program year, the program conditionality on enrollment leads to greater school retention by 12 percentage points. Post-program enrollment rates, when there is no longer any enrollment requirement, still remain higher in the treatment group. Over the two years following the program, the enrollment rate of treated youth is 2-3 percentage points higher than in the control group, where 56% of youth are enrolled. Consistent with previous work (e.g., Buscha et al., 2012; Eckstein and Wolpin, 1999), the persistent effects on enrollment suggest that working while in school does not crowd out future school investment, but instead provide some evidence for crowding in. The persistent enrollment effect is homogeneous across poor and non-poor households. This finding does not provide empirical support to the hypothesis that credit-constrained youth save the income shock due to program wages to finance extra years of education. Instead, our survey data indicate that treated youth expect higher returns to secondary education, which might foster investment. Moreover, we do not find evidence that the extra education acquired in the treatment group is of lower quality. Indeed, our survey data show that grades obtained by participants during the program year are not lower than those in the control group. Treated youth are able to work and study by reducing time devoted to leisure and household chores without exhibiting significant reductions in studying time.

We also find persistent post-program increases on the probability of working while enrolled in school and reductions in the share of youth not working or studying.⁴

⁴This group is close to the widely mentioned NEET (Not in Employment, Education or Training) category.

During the two years following the program, the share of working students among treated youth is 4 percentage points higher (12% of the control complier mean). Four years after the program, when almost all control youth have quit school, we find an important reduction of 5 percentage points in the share of youth not working or studying, over a mean of 20% of NEETs in the comparison group.

In summary, the program increases both youth work experience and education. To find out which channel contributes more to the earnings effect, we conduct a decomposition exercise. We leverage the panel dimension of our data, and estimate the returns to both education and work experience using Mincerian earnings regressions with individual fixed effects. We find that the increase in education of treated youth accounts for 21% of the earnings effect, while the increase in work experience accounts for 50% of the post-program increase in earnings. The contribution of work experience is the result of quantity and price effects that move in opposite directions. On the one hand, the increase in work experience priced as in the control group, i.e. quantity effect, would imply an increase in earnings greater than the estimated treatment effect. On the other hand, the returns to experience are lower in the treatment group than in the control group, implying a negative price effect.

The lower returns to work experience are concentrated among the treated youth who do not accumulate additional experience after the program year. Consequently, we focus on the type of work experience acquired in program firms, and consider how youth leverage this experience to find high-wage jobs when their program jobs end. State-owned companies face stringent rules on hiring/firing for their regular jobs, and program firms hire less than 5% of treated youth over the four years after the program.⁵ This implies that youth earnings during the post-program years depend on the type of human capital acquired on the program job; in particular, on whether it is sector-specific or rather general. We do not find evidence that earnings effects are concentrated in the sectors of the program firms. This suggests that the human capital acquired in program jobs is rather general and valued by the market. Alternatively, the lower returns to experience in the treatment group could be due to a slower rate of general human capital accumulation in program jobs. Our survey data indicate that even though youth are more

⁵The program rules prevent program firms from keeping participants on the same job after the end of the program.

likely to read, write and use computers than control youth, they have less frequent meetings with colleagues, which suggests fewer opportunities to enhance their soft skills. In fact, we find that personality traits, grit and work attitudes measures do not differ between treated and control youth at the end of the program year.⁶

Finally, we provide evidence on the program effects on youth welfare (Heckman, 2010). Program jobs crowd out both time dedicated to household chores and leisure. We use answers to reservation wage questions in our survey to estimate the value of leisure to our population. This allows us to subtract from the program effects on earnings the change in utility due to reduced leisure time. We find that the program increases the youth earnings adjusted for leisure loss by \$836.4 during the program year and by \$266.8 during every post-program year (until four years after the end of the program). Interestingly, the reduction in the time program youth dedicate to household chores points to program effects on the within-household division of roles.

Our paper contributes to the literature estimating the effects of working while in school by providing the first estimates using randomized lotteries to deal with selection into employment. The previous literature uses non-experimental methods and does not reach a consensus about the magnitude of the returns to working while in school on labor market outcomes. For example, Ruhm (1997) finds significant returns in U.S. data, while those estimated in Hotz et al. (2002), which take into account dynamic selection into employment, are not statistically significant.⁷ In contrast, the previous literature consistently points to limited negative effects of working on educational outcomes (Eckstein and Wolpin, 1999; Buscha et al., 2012). Our estimates confirm the absence of negative effects on enrollment rates and point to high earning returns. Moreover, we provide the effects of working while in school on a large set of outcomes, from wages to school grades, study time, and soft skills.

Our study also broadens the recent experimental literature that finds limited effects of summer jobs on labor market outcomes (Gelber et al., 2016; Davis and Heller,

⁶There is evidence that work experience can change soft skills. For example, Gottschalk (2005) finds that an exogenous increase in work experience generates more positive views of work (i.e., improved internal locus of control) among welfare recipients. Similarly, Adhvaryu et al. (2018) find that on-the-job soft-skills training can improve communication and extraversion.

⁷More recently, Ashworth et al. (2017) consider a model of selection into employment that incorporates two unobserved random factors and find more significant wage returns to in-college work.

2017). Summer employment accounts for only a fraction of youth yearly employment. For example, it represents only 31% of yearly employment of teenagers enrolled in school in the U.S. and 28% in Uruguay. We find more positive effects for jobs that last almost a year and are concurrent with schooling.⁸ Furthermore, summer jobs are typically low-quality jobs that might not encourage general human capital accumulation. On the contrary, the jobs we study require youth to engage in more sophisticated tasks (e.g., using computers, writing reports), which imply a higher scope for learning and human capital accumulation (Lagakos et al., 2018).

Finally, our paper contributes to the literature evaluating active labor market policies (ALMP), providing the first causal estimates of the effect of work-study programs. The literature has mainly focused on the evaluation of labor market policies that provide vocational training, wage subsidies or job search assistance, while work-study programs are not commonly discussed (for recent surveys or metaanalyses see Card et al., 2017; Escudero et al., 2017; McKenzie, 2017; Behaghel et al., 2018). There is also little causal evidence on apprenticeship programs, which are a close substitute (Crepon and Premand, 2018; Adda and Dustmann, 2019).⁹ We show that a program combining both work and regular study experience yields earnings effects greater than the worldwide average effects of vocational training reported in McKenzie (2017). While youth employment programs typically target dropouts, and/or disadvantaged youth, our evidence suggests that the earnings effects of working while in school are not concentrated among disadvantaged youth and the program benefits also non-poor youth.¹⁰

The paper proceeds as follows. Section 2 describes the Uruguayan work-study program. Section 3 discusses theoretical insights of the main expected effects of the program. Section 4 presents the data and the econometric model. Section 5 delivers causal estimates of the program effects on core labor market and education

⁸We obtained the share of summer employment for teenagers in the U.S. from 2017 CPS data, and the one in Uruguay using the administrative data for the control group in our sample. See Appendix B for details on the computation.

⁹As work-study programs, apprenticeship programs combine both school attendance and within-firm work. However, they differ to the extent that they are vocational and the school curriculum and occupation are linked together.

¹⁰For examples of field experiments evaluating youth employment programs, see among others Alfonsi et al. (2017); Attanasio et al. (2011); Card et al. (2011); Groh et al. (2016). For a review of social experiments in the U.S. labor market, see Rothstein and von Wachter (2017).

outcomes. Section 6 presents a decomposition of the earnings effect to gauge the quantitative importance of the work experience and education channels. Section 7 presents estimates of the program effects on youth welfare. Finally, Section 8 concludes.

2 The Uruguayan work-study program

Since 2012, the work-study program "Yo Estudio y Trabajo" (referred to YET hereafter) provides youth aged 16 to 20 who live in Uruguay with a first formal work experience in state-owned companies for up to one year. The program is a crossinstitutional initiative coordinated by the Ministry of Labor and Social Security of Uruguay, and offered each year in most main cities.¹¹

All youth aged 16 to 20 who reside in Uruguay are eligible to apply for YET as long as they satisfy two key conditions: 1) they are enrolled in an educational institution, and 2) they have not worked formally for more than 90 consecutive days.¹² Using the microdata including all observations in the 2011 Population Census, we estimate an application rate of 34.6 percent for the 2012 edition of the program. The characteristics of the eligible population and of the program applicants are overall similar, in particular in terms of household socio-economic vulnerability (see Appendix C for details).

Assignment to the program is done by lottery at the locality level.¹³ The number of program participants in each locality depends on the number of jobs offered by the public firms that partner with the program in that locality. Lottery candidates are randomly ranked within locality. Sequential rounds of program offers are made until all local program slots are filled. From the third edition of the program in

¹¹According to the 2011 Census, Uruguay has a population of 3.3 million divided in 19 departments and 298 localities, with around 60 localities with more than 5,000 inhabitants classified as cities. The program offers positions in 77 localities, which include almost all the main cities in Uruguay.

¹²Applications are completed online or using a computer at an employment center and, if selected, applicants must show proof of enrollment from an educational institution certifying a minimum level of attendance (240 hours), an official identification card and the electoral card if older than eighteen. Upon selection, the no formal employment requirement is cross-validated with social security data and proof of enrollment is required every three months.

¹³Candidates select the locality in which they want to participate, which is supposed to be the one in which they live and/or study. However, nothing in the application system restricts this choice or prevents candidates from applying to more than one locality.

2014, quotas were introduced in the largest localities to guarantee participation of minority youth from African origin (8 percent), with disabilities (4 percent) and transgender youth (2 percent). From the fourth edition in 2015, a new quota for youth from vulnerable households (11 percent) was introduced.

Program participants must visit a government center to present the required documentation.¹⁴ They have to attend a two-day orientation workshop provided by the National Institute of Employment and Professional Training and are assigned a supervisor who follows their progress in the program. Participants staying at the job for the full contract period are awarded a work certificate.

Importantly, firms cannot choose the youth they want to hire, and candidates cannot select the firm in which they want to work. The program administration performs the matching of participants to available job positions. While doing so, the program administrators prioritize the compatibility between schooling and work hours over the relevance of the job tasks with respect to the studies specialization. This process implies that there is very little job-candidate matching in terms of skills.¹⁵

The job offered within the program is part-time, with a total of 20 to 30 hours per week, and overtime is not allowed. Participants are supposed to work during the normal operating hours of the firm, with the condition that working hours do not prevent them from attending school. The contract is temporary (9 to 12 months), and cannot be extended. Remuneration is fixed and amounts to \$446 per month for a 30-hour-per-week job in 2016 (around \$15 per hour).¹⁶

Firms must pay youth wages out of their own budget. We visited several program firms to gather qualitative information regarding why they participate in the program. Informal conversations with employers suggest two main reasons why they offer jobs within the program. First, the program allows them to offer parttime one-year contracts that are more flexible than regular in-house labor contracts,

¹⁴At that stage, those aged 16-17 receive information about how to obtain work permits.

¹⁵Informal conversations with the program administrators indicated that distance from home to the firm, and hours at school were the two main variables considered in the matching process.

¹⁶More precisely, the remuneration is fixed at four times the minimum tax unit used in Uruguay, which means 13,360 pesos per month for a 30-hour-per-week job in January 2016. We use the nominal exchange rate of 0.0334 pesos per U.S. dollar in January 2016 throughout the paper. Pregnant women and mothers of kids below the age of 4, who represent around 4% of the lottery applicants, are entitled to wages that are 50% higher. The program wage compares favorably to the national minimum wage fixed at 372 USD per month for a full-time job.

which are strictly regulated in the public sector. Second, program participation enhances the firm's reputation with the central administration.

All program firms belong to the public sector. The majority of these are large state-owned companies and only a few positions are offered in the public administration.¹⁷ For example, the four main program employers of the fifth edition are: the state-owned commercial bank of Uruguay (hiring 22% of program participants), the state-owned electricity company (19%), the state-owned telephone company (9%), and the state-owned oil and gas company (6%). Among smaller employers, we find public administration offices such as the ministry of education or social security administration (see Appendix D for more details on the program firms of the fifth edition). Table 1 reports, for each edition of the program, the main sector of the firm recorded in the administrative data. Most program firms are in the civil sector, which comprises all state-owned companies (except banks) and the public administration (between 64% and 81% of jobs). The second largest sector is banking, which includes the state-owned banks (between 16% and 31% of jobs). Finally, a few jobs are offered by public laboratories (3%-5% of jobs) classified as part of the industry and trade sector, which is the sector involving the majority of private firms in the country.

The program establishes that work activities must be in administration or operations, and should be focused mainly on support tasks. Indeed, 93% of participants in the fifth program edition report working as clerks during the program (see Appendix **D** for more details about tasks performed on program jobs). Furthermore, the program documentation explicitly states that the early work experience should help participants develop soft skills valued in the labor market such as commitment, teamwork, adaptability, flexibility, reliability, a strong work ethic, and communication skills. The direct supervisor assigned by the program to each participant should evaluate these non-cognitive skills twice: during the program and at the end of it.¹⁸

Table 1 reports the number of applications, applicants and positions for each edition of the program. There are around 46,000 applicants in the first program edition in 2012. This represents a large fraction -around one-third- of eligible youth in the

¹⁷Thus the program would fit under the category of "public sector employment" programs (Heckman et al., 1999).

¹⁸We did not get access to these evaluations.

population. There is a downward trend in applications/applicants over time, probably due to the program spending more resources in advertising in the first two editions, and due to longer lottery registration time windows in the first two editions. However, we do not see any notable trend in the applicants' characteristics over time (see Appendix C). Compared to the tens of thousands of applicants, there are less than a thousand program jobs offered every year. Consequently, the share of participants offered a job is between 2 to 3 percent, implying a low probability of obtaining one. Moreover, the program is small relative to the relevant labor markets, which reduces the possibility of important spillovers from treated to control study participants.

As participants may apply to more than one locality in a given edition, the number of applications is slightly larger than the number of applicants: 4 percent of the applicants apply to more than one locality in a given year. Multiple applications across years are more common: 27 percent of applicants apply to more than one edition; most applied to two editions. Lottery winners who did not complete a program job are not allowed to participate in a later edition. We explain how we handle repeated applications when we discuss the empirical specification.

3 Theoretical Channels

The work-study program YET offers part-time temporary jobs in public firms to adolescents who are enrolled in school. We expect that this early work experience will increase the human capital of participants as they acquire hard skills in the workplace. Participants might also acquire soft skills while in the firm, such as work attitudes, self-esteem, communication skills, conflict resolution, time management, teamwork, etc. (Heckman et al., 2006; Groh et al., 2016; Acevedo et al., 2017; Adhvaryu et al., 2018). The corresponding increase in human capital will probably cause higher employment rates and wages after the program ends - to the extent that the skills acquired in the program firms are transferable to other firms in the labor market.

In addition to the *human capital* channel just described above, we expect early work experience to have a signaling role. When future potential employers receive job applications from program participants, they may infer from their early work ex-

perience that participants are motivated or trustworthy and have skills above the hiring bar. This *signaling* channel will further contribute to positive employment and wages, unless program participation stigmatizes youth.¹⁹ We do not expect a significant role for a *screening* channel whereby program firms acquire private information on youth to decide whether to hire them after the program, as it is against the YET guidelines.

While the first two channels mentioned above *-human capital*, and *signaling-* mainly affect employment and wages, YET may also trigger crowding-out effects on schooling investment. As students spend working hours in firms, they may invest less time and effort in studying. This could reduce the general cognitive skill level of participants. However, as participants lose their jobs if they drop out of school, crowding-out effects should be limited, at least at the extensive margin, during the program year. The enrollment condition of the program may even trigger some crowding-in effects during the program year. The program gear. The program gear effect on future earnings may also transit through this education channel.

On top of these channels, the program entails a positive shock to the income of participants. Program earnings could then help credit-constrained youth to finance their education expenses, or spend more time searching for a good job. We expect these effects (i.e., increase in enrollment or decrease in employment rates right after the program) to be stronger for youth living in poor households.

In our main analysis, we estimate the resulting effects of these different channels on average earnings, employment, wages, and educational attainment. In Section 6, we present a decomposition exercise and heterogeneity analysis that suggest which channels are stronger.

¹⁹Even if employers might be aware that participants obtained the early work experience by chance (through a lottery), and thus would not interpret being hired in a program job as informative about skills that are unobserved in the CV, being able to complete the year in the program jobs can still be a meaningful signal. Moreover, potential employers can ask for reference letters from program employers, which would further reduce information asymmetry. Finally, successful participants can show their work certificate awarded at the end of the program.

4 Data and econometric model

4.1 Data

We use four sources of data: YET-program administrative data, social security and educational records for all applicants, and a survey with a representative sample of applicants to the 2016 edition. All data can be matched at the youth level. First, we have data from the online application form that youth must complete in order to participate in YET lotteries. These data include basic demographic information (age, gender, locality), and educational level. From YET administrative records, we also have information on the lottery draws, subsequent offers, and final program participation. This allows us to compute the overall number of positions offered, number of positions accepted and completed (see Table 1 above), and dummies for each of the quotas considered in the program.

The social security data record monthly labor earnings of each applicant and whether the applicants' households receive social transfers. Educational records cover enrollment in public education institutions (secondary, tertiary, universities and out-of-school programs) at a yearly frequency.²⁰ The social security and educational records are available from 2011 to 2017. Consequently, we restrict our main sample of analysis to the first three program editions (2012, 2013 and 2014), so that we can observe outcomes at least for to 2 years after the program.

Table 2 describes our sample of applicants and checks that treatment and control groups are balanced. Panel A presents data from the application form: gender, age, and whether participants applied to the program in Montevideo, the capital city. Panels B and C report data from the administrative records measured before application: education, subsidies from social programs, and labor outcomes. We present data at the application level and control for lottery design when comparing controls and youth receiving a program offer. Overall, the differences between the two groups are negligible, confirming that lotteries were appropriately conducted.

Since 2008, general secondary education is compulsory for youth aged 12-17 years old. It encompasses six years of instruction, divided into two three-year cycles. The second cycle is aimed at youth aged 15-17 years old and has a course load

²⁰Sources are the National Administration of Public Education and the State University.

from 34 to 36 weekly hours.²¹ There are two possible tracks: the academic track, which is in general regarded as more prestigious, and the technical track. Among lottery applicants, around 71 percent are enrolled in public secondary education: 49 percent in academic schools and 22 percent in technical schools; 16 percent of applicants attend the State University, which is free of tuition fees. This is a lower bound for enrollment at university, as the data only record whether the student has taken at least two exams or started a new track in a given year.²² Finally, 3 percent of applicants are enrolled in tertiary non-university programs or in official out-of-school programs. The residual 10 percent of applicants are not enrolled in public institutions during the year before the program. They are most likely enrolled in private institutions, as in the application form all applicants report being enrolled at an educational institution.²³ One youth in four lives in a household that receives a conditional cash transfer, and is thus considered to live in a vulnerable household. Households receiving a food card as well are considered highly vulnerable.²⁴ One youth in ten belongs to this highly vulnerable household category.

Social security data indicate that 15 percent of applicants worked formally for at least one month in the 12 months before applying to the program, with average yearly earnings of \$163.²⁵ On average, applicants worked less than one month the year before the program, as expected, since not having worked formally for more than 90 consecutive days is a requirement to enroll in the program.

To complement the administrative data, we surveyed a representative sample of 1,616 students who applied to the lottery in the Fall 2016 (fifth program edition). The survey was in the field in November and December 2017, just before the end of most program jobs. The survey has two main objectives: describing the program experience (program jobs and time use), and measuring soft skills and school

²¹Gross enrollment rates in 2015 were 96% for the first cycle and 82% for the second cycle, while completion rates were below 50%, with very high repetition rates (Source: "Anuarios Estadísticos de Educación del Ministerio de Educación y Cultura y Departamento de Estadística").

²²For the first edition, we do not have administrative data from universities for the year before the program; only in this case do we use data reported in the application form.

²³A 10% share of private institutions enrollment is in line with data from the 2011 Census.

²⁴Eligibility to social benefits is means-tested. A poverty index is used to select the 200,000 poorest households that receive a cash transfer, and among them, the 60,000 poorest households that receive a food card. The social food card is a prepaid card that can be used to purchase goods at a network of social shops around the country. The amount received by each household varies with number of children and total household income.

²⁵Throughout the paper, we winsorize earnings for the top 1 percent and convert Uruguayan pesos to U.S. dollars using the January 2016 exchange rate of 0.033 dollars per peso.

grades around the end of the program. From the YET administrative data, we selected all applicants who received a program offer and a random subsample of unlucky applicants. The overall response rate of the survey is 79 percent. The response rate in the offer group is slightly higher (81 percent), although this differential attrition does not generate unbalances in baseline covariates between offer and control students (see Appendix Table D1).²⁶

4.2 Econometric model

In the main analysis, we focus on Treatment effects on the Treated (ToT). We define treatment as completing a program job. We define the variable *Offered* as ever-receiving a program job offer. To obtain the causal treatment effect, we leverage the lottery design and instrument the treatment dummy with the *Offered* variable.²⁷ The local average treatment effect is equal to the ToT in our case because there are no always takers. Since the validity of ToT estimates relies on the exclusion restriction, stating that youth not completing the program job are not affected by the offer to participate, we present intention-to-treat estimates (ITT) in the Appendix.²⁸

Using the ever-offered variable as an instrument is a reasonable estimation strategy in the context of randomized waiting lists when the offer rate is small (de Chaise-martin and Behaghel, 2018).²⁹ Appendix Table A1 reports the first stage regression of the *Treated* dummy on the *Offered* variable by edition. Overall, more than 70% of youth receiving a program offer complete their program jobs. This strong first

²⁶The difference between the response rate of the treatment and control group is 3.6 p.p., statistically significant at the 10 percent level. The regression of a dummy for attrition on treatment, baseline covariates and their interaction gives a p-value of 0.61 for the joint test that the coefficients of the interactions between treatment and covariates are jointly zero. Results available upon request.

²⁷Appendix Table A13 explores an alternative strategy where we define treatment as working and studying during the program year. In that case, we estimate a local average treatment effect of working while in school (i.e., the effect for those who only work while in school because they are offered a program job). The first stage is 42% and results are larger than the ones obtained under our main specification, but exhibit the same pattern in term of signs and statistical significance. We relegate these results to the appendix because the exclusion restriction requires stronger assumptions (i.e., there are no effects of being offered a program job that are due to participation in the program and are not mediated through working and studying, such as getting access to better jobs).

²⁸ITT estimates are approximately equal to 0.7 times ToT estimates with the same pattern in terms of sign and statistical significance.

²⁹In Appendix Table A14, we verify that alternative estimators, namely the double weighted ever offer estimator of de Chaisemartin and Behaghel (2018), yield robust results.

stage is homogeneous across editions.³⁰

We analyze data at the application level. To maximize statistical power, all applications, including those by the same applicant in different localities and different editions, are included.³¹ Given the small offer rate (around 2-3%), this choice hardly affects the estimates.³² We consider the following specification at the application level *a* of individual *i* in edition *e*:

$$Y_{i(a),t,e} = \alpha + \delta_t Treated_{i(a),e} + Locality \times EditionFE_a + QuotaFE_a + \#App_{i(a),e} + \beta_t X_{i(a),0,e} + \epsilon_{i(a),t,e}$$
(1)

where $Y_{i(a),t,e}$ is the outcome of individual *i*, *t* periods after the application date in edition *e*. *Treated*_{*i*(*a*),*e*} indicates whether individual *i* completed a program job offered in edition *e*. To control for lottery design, we include *Locality* × *Edition* fixed effects and quota fixed effects. This takes care of variation in the probability of receiving a job offer across lotteries depending on the local number of program jobs offered and on the potential quotas. To further control for individual variation in the offer probability (and thus in the treatment probability), we include the number of applications of individual *i* in a given edition: $#App_{i,e}$. To increase precision, we include a vector of covariates $X_{i(a),0,e}$ measured at application. It comprises gender, age, whether the youth comes from a household that receives a cash transfer, earnings and level of education in the year before applying to the program. Standard errors are clustered at the individual *i* level. Our parameter of interest is δ_t which captures the ToT effect *t* periods after application.

³⁰Appendix Table A2 shows that the effects of receiving a program job offer in Year 0 on the probability of YET participation in future years (i.e., Years 1-4) are negligible. They are negative as youth who complete a program job are not allowed to participate in future editions. Thus, we do not expect the effects on earnings to be mediated through the impact of YET on future YET participation.

³¹We deal with multiple applications in the following way. When a student receives an offer following application *a* in locality 1 in edition year *e*, we first set $Offered_{a,e} = 1$. Then, we also set $Offered_{b,e} = 1$ for every application *b* of the same individual in the same edition-year but in a different locality. All other applications in different edition-years *e'* are by construction such that $Offered_{a',e'} = 0$. The variable *Treated* is adjusted following the same procedure.

³²Our results are robust to restricting the set of applications in the estimation sample to one application per individual, or to the first edition to which a given youth applied.

5 Main results

In this Section, we present the program effects on labor market outcomes and educational attainment. When we use the administrative data on labor market outcomes and on education enrollment, we pool the first three editions of the program. Survey results refer to the fifth edition.

5.1 Effects on labor market outcomes

Graphical overview Figure 1 reports the main program effects on quarterly labor earnings. The dashed line shows the time-evolution of average earnings of the treatment group. By construction, these individuals are compliers since there are no always takers in the sample (no youth can participate in the program if not offered a job). We compute the average earnings of the corresponding compliers in the control group.³³ The solid line in Figure 1 plots its time-evolution. Before the application date, earnings of both control and treatment groups are close to zero, as required by the eligibility condition of the program. After application, the control mean steadily increases, as aging youth gradually enter the labor market, and reaches \$2,000 per quarter, 4 years after the program ends. By contrast, the average earnings of treated individuals rise sharply just after application, and remain on a plateau of about \$1,400 per quarter over the year of the program (in line with the program description). Around one year after the start of the program,³⁴ treated earnings decrease sharply and converge back to the control earnings level. This corresponds to the end of the program, when the temporary jobs within the program must end according to program rules. After this convergence, treated earnings follow an upward trend, but at a steeper rate than control earnings. One year after the program ends, treatment effects are already statistically significant. The dots in Figure 1 report treatment effect estimates $\hat{\delta}_t$ from Equation (1), with

³³Control compliers are youth who did not receive any offer and were not allowed to work in a program job, but would have worked if they had received an offer. The control complier mean is obtained as the difference between the treated mean and the ToT effect.

³⁴There is a delay of a few months between the application deadline and the start of program jobs, when lotteries are drawn, offers are rejected and/or accepted, and organizational workshops are set. In addition, the start of program jobs is staggered. Consequently, we define as program start the date when some first treated individuals start their program jobs, and we define as program end, 12 months after the program start. This duration gives enough time for the program jobs that start last to lapse.

their confidence intervals (vertical lines). After the program ends, treatment effects steadily increase, and reach around \$500 per quarter by the end of the period covered by our data.

Earnings Effects Table 3 summarizes the treatment effects on yearly earnings (in Column 1), on employment (in Columns 2 and 3) and on monthly wages (in Column 4). During the program year, treated youth earn \$2,001 more than control youth, whose yearly earnings are \$972 (Column 1, Row 1). Row 2 reports the effects during the year after the end of the program (labelled Year 1), Row 3 two years after (labelled Year 2), etc. Treatment effects on yearly earnings are positive at all horizons, and statistically significant from Year 3 (they are not statistically significant in the very short run, during the year after the program, and significant at the 10 percent level in Year 2).³⁵ They increase over time from \$52 up to \$1,113 in the fourth year after the program, corresponding to an increase in yearly earnings from 2.5% to 22%. The effect on average yearly earnings over the four postprogram years amounts to \$285 - a 9% increase over the control complier mean. By definition, this is an effect on earnings in the formal sector. Data from the 2013 Continuous Household Survey in Uruguay (ECH) show that 16-20 year-old youth earn around \$200 per year in the informal sector. We use this estimate to compute a conservative lower bound on the program effect on total earnings. Assuming that formal earnings induced by the program completely crowd out informal earnings, we still find a positive effect on total earnings of around \$85.

Employment Effects Earnings effects are partly driven by employment effects at the extensive margin, shown in Columns (2) and (3). Column (2) reports treatment effects on the yearly number of months with positive earnings. During the program year, treated youth work 7 months more than control youth, who have on average less than 3 months with positive earnings. Treatment effects in Year 1 and 2 on months of work per year are small and not statistically significant; they become positive from Year 3 and statistically significant in Year 4. During the fourth year following the program, treated youth work half a month (8%) more than control

³⁵The Appendix presents a series of robustness checks. Results are robust to not including controls $X_{i(a),0,e}$ in the regression (Table A3), clustering standard errors at the locality level (Table A4), restricting the sample to one application per individual (Table A5), not winsorizing earnings (Table A6) or computing ITT effects (Table A7). The main relevant change is that the coefficient in Year 2 becomes significant at the 5 percent level in several specifications, and if anything, estimates are a bit larger.

youth. Column (3) reports the treatment effect on having at least one month of the year with positive earnings. We find slightly more positive and statistically significant effects on this measure of employment. Although positive, employment effects cannot fully account for the yearly earnings effects.

Wage Effects Column (4) of Table 3 reports treatment effects on monthly wages. The estimation sample is restricted to youth with at least one month of positive earnings during the year. We address the issue of selection into employment further below. Monthly wages in program jobs are lower than the wages of employed youth in the control group by \$25 (8%). The survey data, where we observe hours worked by the end of the program year, show that the effect on hourly wage is positive and statistically significant (see Appendix Table D4). This is in line with treated youth being more likely to work in part-time jobs than employed youth in the control group during the program year. The monthly wage effects become positive from Year 1 after the program, and statistically significant from Year 2. In Year 2, the monthly wages of employed youth in the treatment group are \$26 higher, corresponding to a 5% increase over the control mean. Treatment effects increase further over time, up to \$72 in Year 4 - 11% of the control complier mean. The positive effect on wages suggests that the program increased youth productivity.

Bound analysis To tackle the issue of differential selection into employment by treatment status, we present Lee bounds for the ITT effect on wages. Table 4 first reports the ITT effects on wages of employed youth. We obtain statistically significant positive effects from Year 2 on, as in the ToT analysis in Table 3. The ITT effect on wages of employed youth is the result of a causal wage effect and of a composition effect that selects some youth into employment when offered the program. We cannot observe the wages that youth induced to work because of the program would have if they did not participate in the program, and we need extra assumptions to identify the causal wage effect. We follow Lee (2009) and obtain bounds for the average effect on wages for the *always-employed* (i.e., individuals who would be employed regardless of the offer status). We compute lower (upper) bounds by trimming, from the sample of employed youth offered a job, those youth with the *p*% higher (lower) wages, where *p* is 100 times the ratio of the ITT effect on employment over the employment rate of the offered group.

Table 4 reports that the lower bound of the causal wage effect is significantly positive in Years 2 and 3. In Year 4, the lower bound is not different from 0, while the upper bound is as high as \$80. Confidence intervals for these bounds are constructed following the procedure described in Imbens and Manski (2004). Lee bounds are obtained under an individual-level weak monotonicity assumption, which in our case requires that the probability of being employed after the program would be higher in the case of being offered the program job than in the case of not being offered the program job. The fact that our ITT estimates on employment are positive at all horizons provides supporting evidence for the plausibility of this assumption.³⁶ Several recent papers consider an additional assumption of weak monotonicity of potential outcomes, which tightens the bounds (Attanasio et al., 2011; Blanco et al., 2013; Alfonsi et al., 2017). If we assume that the average potential wages in case of being offered the job are larger for the *always-employed* than for the *never-employed*, then we obtain a new lower bound for the causal wage effect equal to the ITT on wages, while the upper bound is still the same as before (Blanco et al., 2013). Under this additional assumption, even for Year 4 the confidence interval for the bounds excludes zero.

Overall, the bound analysis shows that the employment effect at the extensive margin is unlikely to induce selection effects large enough to undo the positive effects found on wages of employed youth. We can thus conclude that the program leads to positive effects on wages, our best proxy for productivity. The magnitude amounts to around 4% (when we divide the lower bound estimate in Year 3 by the control complier mean in Table 3). There are several mechanisms that could trigger such a productivity effect. Before exploring them in Section 6, we turn to the effects on educational enrollment.

5.2 Effects on educational outcomes

Enrollment Effects Table 5 reports the treatment effects on enrollment in educational institutions at various horizons. In Column (1), we pool together all educational institutions, while we consider each educational level separately in Columns

³⁶As Lee (2009) points out, one can test whether the distribution of baseline covariates is still balanced in the selected sample for periods when there is no effect of treatment on employment. We replicate our balance table for the employed sample at Year 3, when we do not find any effect of the program on employment, and we find a p-value of the joint test of significance equal to 0.69. If we do the same test for Year 4, we do see significant differences between the selected treatment and control samples. This provides additional evidence for the monotonicity assumption.

(2) to (5). At the end of the program year, overall enrollment of treated youth increases by 12 percentage points from a control average of 76%. This is consistent with the program requirement of educational enrollment. The direct effect of the program is to reduce the share of high school dropouts. During the three years after the end of the program, the positive effect on enrollment persists, but it is small and only statistically significant in Year 2. In Year 4, the effect is negative, and not statistically significant. This results in an average effect over all the post-program years of 2 percentage points, which is statistically significant at the 5% level.³⁷ Overall, the effect is led by enrollment in secondary education (see Column 2).

Schooling quality Our survey data allow us to measure more precisely investment in schooling and school grades during the program year. We do not find evidence that the quality of education is lower for program participants. Table 6 first confirms with survey data for participants to the 5th program edition that the program increases retention in school. Column (1) reports that the enrollment of treated youth in high school is 10 p.p. higher. Furthermore, this crowding-in at the extensive margin is compensated by some crowding-out at the intensive margin. Column (2) shows a reduction in weekly class hours by almost 2 hours. This is probably associated with a change in regular class schedule for the treatment group rather than an increase in truancy since we do not observe effects on missing school in the last school week (Column 3). Additionally, Column (4) shows a 26-minute reduction in study time outside school per day, over a control mean of 69 minutes. The crowding-in and the crowding-out effects actually offset one another, so that on average time dedicated to school investment is left unaffected by the program (see results on time use in Table 12 below). Column (5) shows that the program has no effect on the grade point average of high school students.³⁸ This is suggestive evidence that the increase in enrollment does not come at the expense

³⁷We present robustness checks in the Appendix. Table A8 presents results without including controls, Table A9 restricting the sample to one application per participant, and Table A10 shows the ITT effects. Overall results are quite robust. In the case when we keep only one application per applicant, we see that coefficients for any enrollment in Years 1-3 increase and become statistically significant.

³⁸Grades range from 1 to 12. Grades 6 to 8 are the most frequent category. We see small positive coefficients on both having a low current GPA between 1 and 5, and a high current GPA between 9 and 12, but they are not statistically significant. We also asked university students to report their average performance (below average, above average or average), and treatment effects (available upon request) are again not statistically significant.

of schooling quality or achievement.³⁹

Persistent Enrollment Effect? While the effects on enrollment during the program year are probably driven by the program requirement and its enforcement, the enrollment effects over the post-program years are unconstrained behavioral responses. This suggests that conditionality in a given period generates *compliance* even after the conditionality is removed. One potential explanation for the persistent enrollment effect relates to the income shock embedded in the program. Under this explanation, the income shock due to program wages could be saved by credit-constrained youth to finance additional education after the program. We test for this explanation by comparing the treatment effect for poor (more likely to be credit-constrained) vs. non-poor households. More precisely, among the poor, we distinguish between youth in vulnerable households who receive social transfers and youth in highly vulnerable household who are also given a food card. Table 7 reports no statistically significant heterogeneity in treatment effects across vulnerability groups on enrollment or earnings. This does not support a strong income effect of the program.⁴⁰

An alternative explanation for the persistent effect on enrollment relates to changes in student expectations of returns to education. Work experience in program jobs may lead students to update their expectations upwards. In our survey, treated youth report a higher expected probability of finding a job if one graduates from high school than the probability reported by control youth. The magnitude of the

³⁹School grades are a popular proxy for cognitive skills. Table 6 could then be interpreted as evidence of the absence of negative treatment effects on cognitive skills. However, this abstracts from selection into schooling, which can blur the picture. It is possible that the crowding-in at the extensive margin triggers a negative selection of low-grade students who would have dropped out of school in the absence of the program. Furthermore, the crowding-out at the intensive margin can depress grades if study effort decreases. Then the absence of effects on school grades may be related to a more subtle mechanism. Indeed, we provide evidence that the tasks performed in program jobs are probably enhancing the cognitive skills of students, as typically measured in school grades. Table D5 reports the treatment effects on job tasks. Treated workers are significantly more likely to read, write and use a computer every day than control workers. Treated workers are less likely to measure weights and distance and they perform less physically demanding tasks. Work effort of treated youth is thus targeted to tasks that may help them perform better in high school exams.

⁴⁰In Appendix Table A16, we explore whether the absence of the income effect on poor households is due to the program crowding out social transfers. Households of program participants that were receiving cash transfers before the program (vulnerable) are less likely to receive cash transfers during the program year than comparable households of control youth. However, the crowding-out is likely to have small effects on total household income, as on average, they represent between 10% (food card) and 20% (cash transfers) of the monthly program wages.

effect is of 3 percentage points from a mean of 70% in the control group (see Appendix Table A17). We do not find any significant treatment effect on the expected returns for other graduation levels (incomplete high school, tertiary or university), which is consistent with the persistent effects being concentrated in high school enrollment. As the effect on expected high school returns is only significant at the 10% level, we consider this evidence as rather suggestive.

5.3 Effects on working and studying

Beyond marginals of employment and education enrollment, we explore the program effects on their joint distribution. Table 8 divides the population into four groups: working and studying in Column (1), working without studying in Column (2), exclusively studying in Column (3) and not working or studying in Column (4). The last group is close to the NEET category (Not in Employment, Education or Training). As expected, the share of working students strongly increases during the program year, from an already high share of 27% for the control compliers. The treatment effect on the share of working students persists in Years 1 and 2, and amounts to 4 percentage points (11-13% of the control mean). This corresponds to reductions in the share of the other three groups, including NEETs. Interestingly, the enrollment effect of 1.6 p.p. for Year 1 (Table 5) is the result of an increase in working students by 4 p.p. (Table 8, Column 1) and a decrease in non-working students by 3 p.p. (Column 2). A similar pattern emerges from the treatment effects in Year 2. This pattern could be explained by treated youth learning how to simultaneously work and study, so that working youth are less likely to drop out of school after the program. It suggests another explanation for the persistent enrollment effect, which could be mediated by treated youth developing stronger habits that combine both work and study. Of course this pattern of treatment effects is also consistent with more complex (and not monotonic) responses. It is at best suggestive of the link between persistent enrollment and persistent work-study.⁴¹

⁴¹For example, we could split youth into two types: *always-in-school* and *marginally-in-school* students. The *always-in-school* students do not change their enrollment status when treated, but may react by finding jobs. The *marginally-in-school* youth do not change their work status when treated, but may refrain from dropping out because of the treatment. Accordingly, *always-in-school* students drive the increase in the work-study share, while *marginally-in-school* youth drive the increase in the overall enrollment rate, irrespective of their work status.

As youth age, there are no longer any significant effects in Year 3. In Year 4, when almost all control youth have quit school (18% are working students and 5% are students only), the program effects entirely correspond to transferring youth from the NEET group to the working group. The program then decreases the share of NEET youth by 5 p.p. (25% of control mean).

Overall, we find empirical evidence for substantial positive treatment effects on earnings, wages, and employment, and limited effects on education after the program. We now discuss the mechanisms leading to the positive earnings effects.

6 Mechanisms

In this section, we analyze the mechanisms driving the program effects. The program increases educational attainment and labor market experience, both proxies for human capital. Through a decomposition exercise, we first quantify which channel, education or work experience, contributes the most to the earnings effects. The decomposition exercise also shows that work experience has lower returns on earnings for youth receiving a program offer. Second, we provide suggestive evidence to explain these lower returns, namely the lack of soft skills improvement during the program job.

6.1 The education channel vs. work experience channel

We first pool the data over all the years after the program and report the Intentionto-Treat effects of the program. Column (1) of Table 9 shows that a program offer increases yearly earnings by \$196.2 - a 6% increase from the control mean.⁴² Columns (2) and (3) report the ITT effects on average educational attainment and experience, both computed at the end of the previous year. Consistent with the results in the previous section, a program offer increases education by 0.14 years and average labor market experience by 0.43 years. These effects combine both direct effects during the program year - additional enrollment due to the program

⁴²For the decomposition exercise, we focus on the sample of one application per individual. We drop from the controls the initial level of education and baseline earnings and we use current age instead of age at application to better capture trends in the life-cycle earnings profile. Therefore, results in Table 9 are slightly different from the main ITT results presented in Table A7.

requirement and work experience in program firms - and post-program effects.⁴³ To what extent do these quantity effects on human capital account for the observed earnings effect? Answering this question requires an estimate of the price of human capital in the youth labor market. Figure 2 plots the raw relationship between earnings and either education level (upper Panel) or labor market experience (lower Panel). Comparing the two panels suggests that returns to labor market experience are steeper than returns to education. We thus expect the education channel to contribute less to the earnings effects than the experience channel. Figure 2 also suggests that returns to labor market experience in the offer group are lower than in the control group, especially for low levels of labor experience. The program-induced difference in returns - referred to as a price effect - then lowers the contribution of the experience channel. To quantify the contribution of both the quantity and the price effects, we now perform a full decomposition exercise.

Framework of the decomposition exercise Let us denote δ the ITT effect on earnings. It is defined as $\delta = \mathbb{E} [Y(1) - Y(0)]$, where Y(1) are the potential earnings if offered to participate in the program and Y(0) the potential earnings if not offered to participate. Thanks to the lottery randomization, it is identified by the difference in average observed outcomes between the offer group (receiving an offer, O = 1) and the control group (conditional on the lottery design effects):

$$\delta = \mathbb{E}[Y|O = 1, Lottery] - \mathbb{E}[Y|O = 0, Lottery].$$

In the following expressions, we suppress the Lottery design effects for the sake of readability.⁴⁴

We assume that the earnings of control youth follow a structural relation:

$$Y_i = \alpha^C + f^C(E_i) + \epsilon_i$$

where E_i is a vector of Education and work Experience. f^C is a non-linear pricing

⁴³More precisely, we compute both education and enrollment at the end of the previous year. For Year 1 - the first year after the program year - human capital is measured at the end of the program year. Effects are then direct effects of the program (i.e., labor market experience in program jobs and extra enrollment due to the program requirement). Starting in Year 2, the work experience of treated youth has been acquired in both program firms (Year 0) and in regular firms (Year 1). Effects then also capture persistent program effects.

⁴⁴We also condition on some exogenous individual characteristics *X* such as age and gender, as in our main specification, which we omit for readability.

function of human capital in the labor market, and ϵ_i represents individual heterogeneity. Similarly, we assume that the earnings of treated youth have a structural form such as:

$$Y_i = \alpha^T + f^T(E_i) + \epsilon_i$$

The structural relations allow for non-linear returns that may depend on the treatment group (i.e., $f^C \neq f^T$). We use the structural relations to decompose the earnings effect:

$$\begin{split} \delta &= \mathbb{E}\left[Y|O=1\right] - \mathbb{E}\left[Y|O=0\right] \\ &= \mathbb{E}\left[\alpha^{T} + f^{T}(E_{i}) + \epsilon_{i}|O=1\right] - \mathbb{E}\left[\alpha^{C} + f^{C}(E_{i}) + \epsilon_{i}|O=0\right] \\ &= \alpha^{T} - \alpha^{C} + \mathbb{E}\left[f^{T}(E_{i})|O=1\right] - \mathbb{E}\left[f^{C}(E_{i})|O=0\right] + \mathbb{E}\left[\epsilon_{i}|O=1\right] - \mathbb{E}\left[\epsilon_{i}|O=0\right] \\ &= \underbrace{\alpha^{T} - \alpha^{C}}_{u} + \underbrace{\mathbb{E}\left[f^{T}(E_{i}) - f^{C}(E_{i})|O=1\right]}_{p} + \underbrace{\mathbb{E}\left[f^{C}(E_{i})|O=1\right] - \mathbb{E}\left[f^{C}(E_{i})|O=0\right]}_{q} \\ &+ \underbrace{\mathbb{E}\left[\epsilon_{i}|O=1\right] - \mathbb{E}\left[\epsilon_{i}|O=0\right]}_{q} \end{split}$$

We further assume that individual heterogeneity is not affected by treatment, so that randomization yields e = 0. Then the contribution of human capital (education and work experience) to the earnings effect is the sum of a price effect p and a quantity effect q. The term u captures the unexplained effect related to other mediators than education or work experience. By convention, the quantity effect is evaluated at the price in the control group.

Empirical results of the decomposition To quantify the decomposition, we first estimate the structural parameters: the marginal returns to one extra year of education and to one extra year of experience. We leverage the panel structure of our data, and estimate the following regression:

$$\begin{split} Y_{i,t} &= IndivFE_i + \gamma_{edu,1}^{C}Education_{i,t-1} + \gamma_{exp,1}^{C}Experience_{i,t-1} + \gamma_{exp,2}^{C}Experience_{i,t-1}^{2} \\ &+ Offered \times \left(\delta_{edu,1}Education_{i,t-1} + \delta_{exp,1}Experience_{i,t-1} + \delta_{exp,2}Experience_{i,t-1}^{2}\right) \\ &+ \beta X_{i,t} + \nu_{i,t} \end{split}$$

where $Y_{i,t}$ are total labor earnings of worker *i* in year *t* after the application date,

*Education*_{*i*,*t*-1} is education level (in years), and *Experience*_{*i*,*t*-1} is formal work experience (in years), both measured at the end of the previous year. The estimation sample is restricted to the post-program period. Table 9 reports the estimation results in Column (4). The estimates confirm the conclusions drawn from Figure 2. Returns to education are not statistically different across offered and control. This result further confirms that the additional education acquired because of the program is not of lower quality. On the contrary, returns to experience are statistically different. The average marginal effect of an extra year of experience is \$871.2 with standard error 18.8 in the control group, while it is \$652.1 with standard error 111.2 in the offer group. The difference is statistically significant at the 5% level.⁴⁵ These estimates, together with the mean education and experience in the treatment group, allow us to perform the decomposition exercise, reported in Table 10. We find that out of the \$196 effect on yearly earnings, quantity effects from experience contribute the most, up to 174%. Price effects from experience actually contribute negatively: -121%. The contribution from the educational human capital is one order of magnitude lower, at most 16% for its quantity effect. Similarly, the contribution of unobserved mediators is small: 26%. Overall, the experience component explains more than 50% of the earnings effect.

6.2 Returns to work experience

The previous finding raises the fundamental question of why work experience for youth offered the program has lower returns on earnings. As shown in Figure 2, the lower returns are concentrated among youth with low experience. This suggests that some program participants acquired work experience only during the program year. Consequently, we consider several explanations focused on the type of experience acquired in program firms, and how youth can leverage this experience to find new jobs when their program jobs end. In fact, the transition from program jobs to regular jobs is a key and unavoidable step for program participants. The program rules prevent program firms from keeping participants on the same job after the end of the program year. In practice, state-owned companies face stringent rules on hiring/firing on their regular jobs and hire less than 5% of treated youth over the four years after the program.

⁴⁵The difference in marginal effects is \$219 with standard error 113.

The first explanation for lower returns to experience for program youth relates to the sector specificity of human capital acquired in program firms. Treated youth work in state-owned companies, mostly in the Civil and public Banking sectors, while non-program labor market opportunities are mostly provided in the private Trade/Industry sector. If human capital is sector-specific, program participation should increase earnings in the Civil and Banking sectors, but not in the Trade/Industry Sectors. Program participants may even have lower earnings in the Trade/Industry Sector as they lag behind controls in terms of sector-specific experience. Consequently, the first work experience of program youth might provide them with lower average returns across sectors. To assess this explanation, we estimate the earnings effects separately for each sector. We report the detailed estimation results in Appendix Tables A11 and A12. Overall, we find that earnings effects are not concentrated in the sectors of the program firms. In Years 1 to 3, the earnings effects are even stronger in the Trade/Industry sector, and non-significant in the Civil sector.⁴⁶ Consequently we do not find stark evidence of sector specificity.

The second explanation for lower returns to experience for program youth relates to the overall level of general/transferable human capital acquired in program jobs. More precisely, we consider soft skills, which are explicit targets of the YET program. If soft skills are accumulated in regular jobs (Deming, 2017; Adhvaryu et al., 2018), but program jobs fail to enhance the soft skills of participants, the overall level of human capital per work experience unit will be smaller for program participants, leading to lower returns to experience. We first test whether the experience acquired during the program enhances youth soft skills. We measure them in our in-house survey of program applicants to the 2016 edition. The survey was conducted around one year after application, when most of the program participants were still working in their program firms. Panel A of Table 11 reports treatment effects on each dimension of the Big 5 personality test and a measure for grit, following the estimation of Equation (1) as before.⁴⁷ We do not find any statistically significant effect, even on grit, which has been shown to be a malleable skill (Alan

⁴⁶As we explained above, the administrative data only provide information on whether the firm pertains to one of four aggregate sectors: Trade-Industry, Banking, Civil Sector or other low-qualified sectors (construction, agriculture and domestic workers).

⁴⁷The big 5 personality traits are measured with Likert-scale questions (15 questions in total, 3 questions for each dimension of the OCEAN Big 5 personality test). The questionnaire used is based on Pierre et al. (2014), including questions to capture the concept of grit (Duckworth et al., 2007).

et al., 2019; Ubfal et al., 2019). Moreover, the questionnaire included some specific questions on work attitudes and soft skills that can be useful in the workplace (e.g., the importance of working in teams, of completing tasks on time, of being punctual and flexible). Panel B of Table 11 shows no statistically significant differences across treatment and control groups in these dimensions. Finally, we obtained a behavioral measure of punctuality by recording whether youth arrived to the survey interview at the scheduled time. In line with the previous results, we find no statistically significant difference in punctuality between treated and control youth (Column 6). Across the board, the evidence goes against the program stated objective of enhancing the soft skills of students by exposing them to a real work environment. This evidence is in line with the type of jobs that the program offers where social interactions are less frequent than in the control group (see Appendix Table D5). At the end of the program year, treated youth have higher work experience, but similar levels of soft skills. The lack of soft skills accumulated in program jobs is then a credible explanation for the lower earning returns on work experience for program youth.48

A third alternative explanation relates to the signaling role of work experience. The signaling channel does not rely on human capital acquisition on the job, but rather on how workers may signal their permanent productivity to the market. Showing some work experience on their CV, students can signal their productivity and motivation to potential employers. If potential employers know that selection in program jobs is random, then program participation mostly signals students' motivation. Consequently, work experience in program jobs may provide less precise signals on youth productivity to the labor market than non-program jobs. This would also lead to lower returns to work experience for program youth. Recent evidence from correspondence studies in European countries indicates that resumes with work experience in subsidized jobs do not generate lower call back rates than resumes with non-subsidized work experience (Cahuc et al., 2017). This suggests a

⁴⁸Our underlying assumption is that non-program jobs enhance soft skills. Gottschalk (2005) provides experimental evidence from the Self-Sufficiency Project that work experience enhances workers' locus-of-control. Similarly, Adhvaryu et al. (2018) show that on-the-job soft-skills training can improve personality traits. Using our survey data, we report in Appendix Table A15 the correlation between soft skill measures and the employment status of control youth. We find significant correlations of the expected sign. The correlations are statistically significant at the 5% level for 3 out of 10 independent measures. Of course, these correlations also reflect selection into employment and not only the effect of employment on skills. Unfortunately, we do not have panel data on soft skills, and cannot report the within-individual relation between soft skills and work experience.

limited role for this alternative explanation, that should be further investigated in future research.

7 Youth Welfare analysis

In this section, we provide evidence on the program effects on youth welfare, beyond effects on earnings. We leverage our in-house survey that describes the time use of program participants and their opportunity cost of work during the program year.

During the program year Our survey includes a detailed module on time use. Table 12 yields unique information on how the increase in working time due to the program crowds out other activities. The program increases youth weekly working time by almost 11 hours. Hours worked in the treatment group are more than double those in the control group.⁴⁹ We do not find evidence of work crowding out or crowding in study time. The positive effect of the program on enrollment and the negative effect on study hours conditional on being enrolled cancel each other out. The main result in Table 12 is that wage employment crowds out both home production (Column 4) and leisure time (Column 5). Leisure time decreases by 14 percent and time dedicated to household chores decreases by 50 percent.⁵⁰

What does this mean for the effects on youth welfare during the program year? To answer this question, we further assume that the disutility from working, studying, commuting and home production is the same. They are time-consuming activities that reduce leisure time. We also neglect the additional consumption that home production and study may yield. For household chores, this is reasonable as 90% of youth live with their families, and we expect other family members to take

⁴⁹Hours worked measured in the time-use survey reach almost 20 hours in the treatment group. This is slightly lower than the hours range stated on the program rules (20-30), probably because some treated youth already left their program jobs by the time of the survey and report zero hours worked.

⁵⁰We do not find effects on sleeping time and the there is a marginally statistically significant reduction on the time dedicated to eating (1.4 hours per week). Furthermore, we do not find evidence of program effects on youth health. Although few respondents report them, we do not find any significant treatment effect on the time spent visiting physicians or hospitals. This is confirmed by another direct question about health complications in the survey, where no effects are detected, and by the absence of effects on mortality rates registered in the administrative data.

over youth tasks at home, without reduction in youth consumption.⁵¹ Then we need to estimate the utility derived from leisure. We leverage the reservation wage question of our survey: "What is the minimum monthly wage for which you would accept a full-time job?" Monthly reservation wages average \$590 for a full-time job of 160 hours. This implies that one hour of leisure yields utility equivalent to \$3.7 of consumption (= 590/160).⁵² Table 12 shows that the program decreases monthly leisure time by 21 hours (= 4.9×4.3). The monthly loss of utility due to the program effect on leisure is then equivalent to \$77.7 (= 3.7×21). This is to be compared with the treatment effect on monthly earnings of \$147.4 at the end of the program year (see Table D2). The net effect on youth welfare is then \$69.7 per month, which adds up to \$836.4 over the whole program year. We now move to a welfare analysis beyond the program year.

Beyond the program year We interpret the reservation wage answers within the neoclassical labor supply model. Worker *i* gets utility from leisure *l* and from consumption *c*: U(c, l). She is endowed with *T* hours. She can work \bar{h} hours in a full-time job and receive a total wage *w*. We assume that she has a level *v* of non-labor income, so that she consumes c = w + v. The utility when non-employed is U(v, T). The reservation wage *R* verifies: $U(R + v, T - \bar{h}) = U(v, T)$.

Suppose that the program increases w from w(0) to w(1). Every worker with $w(0) \le w(1) < R_i$ remains non-employed both when treated or control. There is no welfare effect of the program for such a worker. Workers with $w(0) < R_i \le w(1)$ switch from non-employment to employment because of the program. The increase in their utility is:

$$U(w(1) + v, T - \bar{h}) - U(v, T) = U(w(1) + v, T - \bar{h}) - U(R_i + v, T - \bar{h}) = w(1) - R_i$$

where we assume that utility is separable with respect to consumption and leisure and linear in consumption. Finally, workers with $R_i < w(0) \le w(1)$ are employed

⁵¹The reduction in the time that program youth spent on household chores probably imposes negative externalities on other household members. We leave the household welfare analysis for future research, as it requires household-level data.

⁵²We also assume that only the quantity and not the quality of leisure is affected by the program. A priori, it is possible that due to their higher income youth derive higher utility for the same level of time dedicated to leisure. However, we do not find any differential program effects on home vs. outside-home leisure activities: TV, music, video games vs. movies, sport events, etc.

both when treated or control. Their increase in utility is:

$$U(w(1) + v, T - \bar{h}) - U(w(0) + v, T - \bar{h}) = w(1) - w(0).$$

Consequently, we can derive the average program effect on utility:

$$\mathbb{E} \left[U(1) - U(0) \right] = \mathbb{P} \left(R_i < w(0) \le w(1) \right) \times \mathbb{E} \left[w(1) - w(0) | R_i < w(0) \le w(1) \right] \\ + \mathbb{P} \left(w(0) < R_i \le w(1) \right) \times \mathbb{E} \left[w(1) - R_i | w(0) < R_i \le w(1) \right] \\ = \mathbb{E} \left[w(1) | R_i \le w(1) \right] - \mathbb{P} \left(R_i < w(0) \right) \times \mathbb{E} \left[w(0) | R_i < w(0) \right] \\ - \mathbb{P} \left(w(0) < R_i \le w(1) \right) \times \mathbb{E} \left[R_i | w(0) < R_i \le w(1) \right]$$

The two probabilities are identified in the data. $\mathbb{P}(R_i < w(0) \le w(1))$ can be recovered from the employment rate in the control group. $\mathbb{P}(w(0) < R_i \le w(1))$ is the treatment effect on employment. The two average wages are also identified in the data: $\mathbb{E}[w(1)|R_i \le w(1)]$ and $\mathbb{E}[w(0)|R_i < w(0)]$. The average reservation wage of youth induced to work because of the program is not identified without further restrictions. We assume that it is equal to the reservation wage of nonemployed youth with the lowest reservations wage in the control group. Given that we observe reservation wages in the end-of-program-year survey only, we further assume that the reservation wage distribution remains stable over the next four years. Because over the four post-program years 67% of youth work and the treatment effect on employment is 3 percentage points, we use the 67th percentile of the reservation wage distribution as an upper bound for $\mathbb{E}[R_i|w(0) < R_i \le w(1)]$. This yields \$616.7. We thus subtract \$18.5 (= 0.03 × 616.7) from the treatment effect on earnings to obtain the average effect on welfare: \$266.8.

To sum up, we find using reservation wage and time-use data that the program increases youth earnings adjusted for work disutility by \$836.4 during the program year and by \$266.8 during every post-program year (until four years after program end). As earnings effects trend upwards after the program end, we expect the effects on youth welfare to persist beyond the fourth year after the program. However this depends on the rate of diminishing returns to work experience that would eventually trigger a convergence between program participants and the control youth later in their working life.

8 Conclusion

In this paper, we provide the first evidence of the effect of working while in school that uses controlled random variation in job offers. We leverage an Uruguayan program that offers jobs to students by lottery. We find that working while enrolled in school during the program year improves labor market outcomes in the following four years. We see positive and statistically significant effects on formal earnings, employment and wages.

We also find persistent positive effects on education enrollment, which suggests limited crowding out of working on studying. We find a large increase in high school enrollment during the program year, which could be explained by the enrollment conditionality of the program. However, we also find effects after the program year, when there is no binding conditionality. Moreover, we find no evidence of negative effects on schooling effort and outcomes. Our time-use survey indicates that students manage to work while in school by reducing time dedicated to leisure and household chores. We show that youth welfare is still positive after accounting for the decrease in utility due to this reduction in leisure. A topic for future research is to study how the welfare of other household members is affected by the extra time they have to dedicate to household chores.

We provide evidence that the accumulation of labor market experience contributes more to the effects of working while in school than the extra-education channel. The human capital that students acquire in state-owned companies is valued by private employers. However, we find that the work experience acquired thanks to the Uruguayan program has lower returns on future earnings than alternative jobs, probably because students did not enhance their soft skills while working in the program jobs. Our empirical analysis emphasizes human capital accumulation as a key channel. However, we cannot discard a signaling role of student work, which is certainly an interesting avenue for further research.

Our results support the further development of work-study programs. We believe that the characteristics of the program we study - it offers well-paid jobs in clerical occupations and is complementary to schooling - are key ingredients of its success. Further analysis in other contexts could leverage job heterogeneity to shed light on these program design choices.

References

- ACEVEDO, P., G. CRUCES, P. GERTLER, AND S. MARTINEZ (2017): "Living Up to Expectations: How Job Training Made Women Better Off and Men Worse Off," Working Paper 23264, National Bureau of Economic Research.
- ADDA, J. AND C. DUSTMANN (2019): "The Sources of Wage Growth," mimeo.
- ADHVARYU, A., N. KALA, AND A. NYSHADHAM (2018): "The Skills to Pay the Bills: Returns to On-the-job Soft Skills Training," Working Paper 24313, NBER.
- ALAN, S., T. BONEVA, AND S. ERTAC (2019): "Ever Failed, Try Again, Succeed Better: Results from a Randomized Educational Intervention on Grit," *Quarterly Journal of Economics. Forthcoming.*
- ALFONSI, L., O. BANDIERA, V. BASSI, R. BURGESS, I. RASUL, M. SULAIMAN, AND A. VITALI (2017): "Tackling Youth Unemployment: Evidence from a Labor Market Experiment in Uganda," Working paper.
- ALTONJI, J. G. AND C. R. PIERRET (2001): "Employer Learning and Statistical Discrimination"," *The Quarterly Journal of Economics*, 116, 313–350.
- ASHWORTH, J., V. J. HOTZ, A. MAUREL, AND T. RANSOM (2017): "Changes across Cohorts in Wage Returns to Schooling and Early Work Experiences," Working Paper 24160, National Bureau of Economic Research.
- ATTANASIO, O., A. KUGLER, AND C. MEGHIR (2011): "Subsidizing Vocational Training for Disadvantaged Youth in Colombia: Evidence from a Randomized Trial," *American Economic Journal: Applied Economics*, 3, 188–220.
- BANERJEE, A., R. BANERJI, J. BERRY, E. DUFLO, H. KANNAN, S. MUKERJI, M. SHOT-LAND, AND M. WALTON (2017): "From Proof of Concept to Scalable Policies: Challenges and Solutions, with an Application," *Journal of Economic Perspectives*, 31, 73–102.
- BEHAGHEL, L., M. GURGAND, V. KUZMOVA, AND M. MARSHALIAN (2018): "Skills to Help Youth Transition into the Labor Market," Review Paper, European Social Inclusion Initiative, J-PAL, chapter 2.
- BLANCO, G., C. FLORES, AND A. FLORES-LAGUNES (2013): "The Effects of Job Corps Training on Wages of Adolescents and Young Adults," *American Economic Reiew: Papers Proceedings*, 103, 418–422.
- BUSCHA, F., A. MAUREL, L. PAGE, AND S. SPECKESSER (2012): "The Effect of Employment while in High School on Educational Attainment: A Conditional

Difference-in-Differences Approach," Oxford Bulletin of Economics and Statistics, 74, 380–396.

- CAHUC, P., S. CARCILLO, AND A. MINEA (2017): "The Difficult School-to-Work Transition of High School Dropouts: Evidence from a field experiment," CEPR Discussion Papers 12120, C.E.P.R. Discussion Papers.
- CARD, D., P. IBARRARN, F. REGALIA, D. ROSAS-SHADY, AND Y. SOARES (2011): "The Labor Market Impacts of Youth Training in the Dominican Republic," *Journal of Labor Economics*, 29, 267–300.
- CARD, D., J. KLUVE, AND A. WEBER (2017): "What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations," *Journal of the European Economic Association*, 16, 894–931.
- CEPAL AND OIT (2017): "Coyuntura Laboral en America Latina y el Caribe. La transicion de los jovenes de la escuela al mercado laboral." Bol. CEPAL-OIT 17.
- CREPON, B. AND P. PREMAND (2018): "Creating New Positions? Direct and Indirect Effects of a Subsidized Apprenticeship Program," The World Bank Policy Research Working Paper.
- CZIBOR, E., D. JIMENEZ-GOMEZ, AND J. A. LIST (2019): "The Dozen Things Experimental Economists Should Do (More of)," Working Paper 25451, National Bureau of Economic Research.
- DAVIS, J. M. AND S. B. HELLER (2017): "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," *American Economic Review*, 107, 546–50.
- DE CHAISEMARTIN, C. AND L. BEHAGHEL (2018): "Estimating the effect of treatments allocated by randomized waiting lists," Available at SSRN: https://ssrn.com/abstract=3175452 or http://dx.doi.org/10.2139/ssrn.3175452.
- DEMING, D. (2017): "The Growing Importance of Social Skills in the Labor Market," *Quarterly Journal of Economics*, 132, 1593–1640.
- DUCKWORTH, A., C. PETERSON, M. MATTHEWS, AND D. KELLY (2007): "Grit: Perseverance and Passion for Long-Term Goals," *Journal of Personality and Social Psychology*, 92, 1087–1101.
- ECKSTEIN, Z. AND K. I. WOLPIN (1999): "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," *Econometrica*, 67, 1295–1339.

ESCUDERO, V., J. KLUVE, E. L. MOURELO, AND C. PIGNATTI (2017): "Active Labour

Market Programmes in Latin America and the Caribbean: Evidence from a Meta Analysis," IZA Discussion Papers 11039, Institute for the Study of Labor (IZA).

- FARBER, H. S. AND R. GIBBONS (1996): "Learning and Wage Dynamics," *The Quarterly Journal of Economics*, 111, 1007–1047.
- GELBER, A., A. ISEN, AND J. B. KESSLER (2016): "The Effects of Youth Employment: Evidence from New York City Lotteries," *The Quarterly Journal of Economics*, 131, 423–460.
- GOTTSCHALK, P. (2005): "Can work alter welfare recipients' beliefs?" Journal of Policy Analysis and Management, 24, 485–498.
- GROH, M., N. KRISHNAN, D. MCKENZIE, AND T. VISHWANATH (2016): "Do Wage Subsidies Provide a Stepping-Stone to Employment for Recent College Graduates? Evidence from a Randomized Experiment in Jordan," *The Review of Economics and Statistics*, 98, 488–502.
- HECKMAN, J. (2010): "Building Bridges Between Structural and Program Evaluation Approaches to Evaluating Policy," *Journal of Economic Literature*, 48, 356–398.
- HECKMAN, J., R. LALONDE, AND J. SMITH (1999): "Chapter 31 The Economics and Econometrics of Active Labor Market Programs," Elsevier, vol. 3 of *Handbook of Labor Economics*, 1865 2097.
- HECKMAN, J., J. STIXRUD, AND S. URZUA (2006): "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," *Journal of Labor Economics*, 24, 411–482.
- HOTZ, V. J., L. C. XU, M. TIENDA, AND A. AHITUV (2002): "Are There Returns to the Wages of Young Men from Working While in School?" *The Review of Economics and Statistics*, 84, 221–236.
- IMBENS, G. AND C. MANSKI (2004): "Confidence Intervals for Partially Identified Parameters," *Econometrica*, 72, 1845–1857.
- LAGAKOS, D., B. MOLL, T. PORZIO, N. QIAN, AND T. SCHOELLMAN (2018): "Life Cycle Wage Growth across Countries," *Journal of Political Economy*, 126, 797–849.
- LEE, D. S. (2009): "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," *The Review of Economic Studies*, 76, 1071–1102.
- McKENZIE, D. (2017): "How Effective are Active Labor Market Policies in Developing Countries? A Critical Review of Recent Evidence," *World Bank Research Observer*, 32, 127–154.

- OECD (2018): "Education at a glance: Transition from school to work (Ed. 2018)," OECD education statistics (database), https://doi.org/10.1787/515cb36f-en.
- PALLAIS, A. (2014): "Inefficient Hiring in Entry-Level Labor Markets," *The American Economic Review*, 104, 3565–3599.
- PIERRE, G., M. L. S. PUERTA, A. VALERIO, AND T. RAJADEL (2014): "STEP skills measurement surveys : innovative tools for assessing skills," Tech. rep.
- ROTHSTEIN, J. AND T. VON WACHTER (2017): "Chapter 8 Social Experiments in the Labor Market," in *Handbook of Economic Field Experiments*, ed. by Banerjee and Duflo, North-Holland, vol. 2 of *Handbook of Economic Field Experiments*, 555 637.
- Ruнм, C. J. (1997): "Is High School Employment Consumption or Investment?" *Journal of Labor Economics*, 15, 735–776.
- UBFAL, D., I. ARRAIZ, D. BEUERMANN, M. FRESE, A. MAFFIOLI, AND D. VERCH (2019): "The Impact of Soft-Skills Training for Entrepreneurs in Jamaica," IZA Discussion Paper No. 12325.

FIGURES

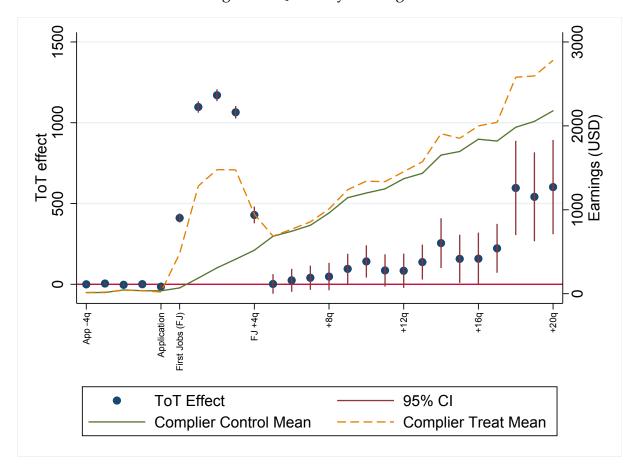
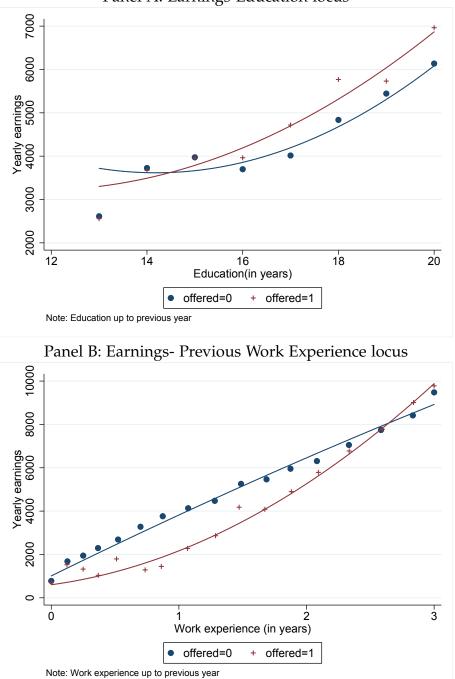


Figure 1: Quarterly earnings

Figure 2: Post-program yearly earnings profiles wrt. previous education and labor market experience, by treament



Panel A: Earnings-Education locus

Note: These figures plot yearly earnings in the fourth year after the program against education levels in Panel A and previous work experience in Panel B. Yearly earnings are related to proxies of human capital measures at the end of the previous year. For example, 2017 earnings are plotted against the education level attained at the end of 2016 and the stock of labor market experience as of the end of 2016. We plot the profiles separately for applicants receiving an offer (blue dots), or not (red crosses).

TABLES

Edition	1	2	3	4	5
Application Date	May 2012	May 2013	May 2014	Sep 2015	Sep 2016
Applications	46,544	43,661	31,990	21,159	27,143
Applicants	46,008	42,643	30,969	20,537	26,137
Job Offers Made	754	981	955	722	843
Jobs Completed	549	686	660	541	632
Sector: Civil	0.81	0.73	0.71	0.64	0.64
Sector: Industry/Trade	0.03	0.05	0.04	0.05	0.05
Sector: Banking	0.16	0.23	0.25	0.31	0.31
Localities	51	64	67	65	63

Table 1: YET edition by edition

Source: YET Administrative Data.

	(1)	(2)	(3)	(4)	(5)
	Con	trol	Off	ered	
	Mean	S.D.	Mean	S.D.	p-value ¹
Panel A. Demographics					•
Female	0.60	0.49	0.61	0.49	0.33
Aged 16-18	0.72	0.45	0.71	0.45	0.64
Aged 18-20	0.28	0.45	0.29	0.45	0.64
Montevideo (Capital City) ²	0.49	0.50	0.53	0.50	
Panel B. Education and Social Programs Year -1					
Enrolled in Academic Secondary Education	0.49	0.50	0.48	0.50	0.32
Enrolled in Technical Secondary Education	0.22	0.41	0.22	0.42	0.49
Enrolled in University ³	0.16	0.37	0.16	0.37	0.89
Enrolled in Tertiary Non-University	0.01	0.11	0.01	0.10	0.43
Enrolled in Out-of-School Programs	0.02	0.13	0.02	0.14	0.80
Highly Vulnerable HH (Food Card Recipient)	0.09	0.29	0.09	0.29	0.93
Vulnerable Household (CCT recipient)	0.26	0.44	0.27	0.44	0.22
Panel C. Labor Outcomes Year -1					
Earnings (winsorized top 1%, USD)	163.17	578.73	151.63	571.44	0.34
Positive Earnings	0.15	0.36	0.15	0.35	0.73
Months with Positive Earnings	0.68	2.07	0.62	1.96	0.25
Panel D. Aggregate orthogonality test for panels A-C					
p-value (joint F-test) ⁴					0.80
Observations	119,366		2,829		

Table 2: Balance checks between treatment and control groups - all editions pooled

Source: Administrative Data and YET Application Form.

Notes: ¹p-value reported in Column 5 is obtained from a regression of each variable on a YET job offer dummy with clustered standard errors at the applicant level, controlling for lottery design (lottery and quota dummies) and number of applications. ² We do not test for differences in means for Montevideo since the lottery was randomized within each locality and we control for lottery design in all our specifications. ³We code "Enrolled in university" by using two indicators available in the administrative data: "entering a new program that year" or "taking at least two exams that year", for the first edition we do not have data on Year -1 and we use the value self-reported by participants in the application form. ⁴ p-value corresponds to the orthogonality test in a regression of the YET job offer dummy on covariates, the regression also controls for lottery design and numb#1 of applications (coefficients not included in the F-test).

	(1)	(2)	(3)	(4)
	Total	Months with	Positive	Wages
	earnings	positive earnings	earnings	
Program Year				
Year 0	2001.48***	7.41***	0.60***	-24.81***
	(41.64)	(0.08)	(0.01)	(3.09)
	[972.36]	[2.57]	[0.40]	[321.32]
Post-Program Yea				
Year 1	51.75	-0.06	0.04***	4.59
	(79.92)	(0.13)	(0.01)	(7.92)
	[2026.38]	[4.54]	[0.60]	[398.50]
Year 2	206.56*	-0.02	0.02	26.39***
	(110.24)	(0.14)	(0.01)	(9.97)
	[3083.94]	[5.60]	[0.67]	[498.05]
Year 3	432.84***	0.18	0.01	43.08***
	(165.44)	(0.18)	(0.02)	(13.35)
	[4107.04]	[6.40]	[0.72]	[583.19]
Year 4	1113.19***	0.57**	0.05**	71.86***
	(285.81)	(0.25)	(0.02)	(23.08)
	[5046.11]	[7.07]	[0.75]	[661.82]
Ys 1-4 (Avg.)	285.35***	0.07	0.03***	26.22***
	(103.38)	(0.12)	(0.01)	(8.60)
	[3142.03]	[5.56]	[0.67]	[506.65]
Individuals	90,423	90,423	90,423	48,375
Applications	122,195	122,195	122,195	58,078
	1,1>0	· ···	122,170	

Table 3: Effect of YET on labor outcomes

Source: Administrative data.

Notes: Two stage least squares regressions where we instrument the YET participation dummy with a job offer dummy. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. **Total earnings**: total labor income over 12 months, winsorized at the top 1 percent of positive values and converted into U.S. dollars. **Month Pos. earnings**: number of months over 12 months with positive income. **Positive earnings**: indicator for positive earnings in any month over 12 months. **Wages**: Total earnings divided by Month Pos. earnings, it is missing for those who have not worked any month over the 12 months. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. The number of observations (applicants) for Columns (1)-(3) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. **Ys 1-4 (Avg)** reports results for a regression pooling all post-program years. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1) ITT effect on wages	(2) (3) Lee bounds on wage effect		(4) Imbens and Manski 95% confidence interval
		Lower	Upper	
Year 1	3.29 (5.68) [409.15]	-23.27*** (5.04)	20.84*** (5.57)	{-31.56, 30.00}
Year 2	18.99*** (7.19) [501.88]	16.21** (7.06)	28.72*** (7.02)	{4.60, 40.27}
Year 3	31.35*** (9.74) [589.37]	30.49*** (9.71)	38.20*** (9.68)	{14.52, 54.12}
Year 4	53.91*** (17.34) [682.72]	-3.635 (14.16)	82.80*** (17.08)	{-26.93, 110.90}

Table 4: Bounds for the ITT effects on monthly wages (post-program years)

Notes: This table presents bounds on causal effect on wages for the "always employed" (individuals who would be employed regardless of whether they are offered the program job or not) based on the procedure described in Lee (2009). To obtain the upper bound, we trim the sample of observed wages in the offered group with the p% lower wages, where p is the ratio of the ITT effect on employment over the employment rate on the offered group. The lower bound is the symmetric case where we trim the p% of higher wages. Standard errors clustered at the applicant level shown in parenthesis and control means in brackets. We follow Imbens and Manski (2004) to construct confidence intervals for the bounds. The number of observations (applicants) is: 74,447 (58,625) for Year 1, 81,297 (62,657) for Year 2, 63,718 (52,529) for Year 3 and 34,495 (34,090) for Year 4.

	(1) Any Level	(2) Secondary Education	(3) University	(4) Tertiary Non-Univ.	(5) Out-of-school Programs
Program Year					
Year 0	0.119***	0.101***	0.012	0.005	0.004
	(0.010)	(0.012)	(0.008)	(0.004)	(0.005)
	[0.756]	[0.521]	[0.207]	[0.017]	[0.025]
Post-Program	Years				
Year 1	0.016	0.024*	-0.000	0.003	-0.006*
	(0.014)	(0.013)	(0.011)	(0.005)	(0.003)
	[0.646]	[0.344]	[0.279]	[0.025]	[0.016]
Year 2	0.031**	0.021*	0.005	0.004	0.003
	(0.014)	(0.012)	(0.011)	(0.005)	(0.004)
	[0.472]	[0.236]	[0.213]	[0.028]	[0.007]
Year 3	0.019	0.023*	-0.011	0.003	0.005
	(0.017)	(0.013)	(0.011)	(0.005)	(0.004)
	[0.366]	[0.181]	[0.161]	[0.028]	[0.005]
Year 4	-0.007	0.001	-0.006	-0.008	0.008
	(0.020)	(0.017)	(0.009)	(0.007)	(0.005)
	[0.231]	[0.156]	[0.044]	[0.030]	[0.004]
Ys 1-4 (Avg.)	0.022**	0.020**	0.001	0.002	0.001
	(0.010)	(0.009)	(0.008)	(0.003)	(0.003)
	[0.483]	[0.253]	[0.206]	[0.027]	[0.009]
Individuals	90,423	90,423	90,423	90,423	90,423
Applications	122,195	122,195	122,195	122,195	122,195

Table 5: Effect of YET on enrollment in education.

Notes: Two stage least squares regressions where we instrument the YET participation dummy with a job offer dummy. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. We code "registered at university" by using two indicators available in the administrative data: "entering a new program that year" or "taking at least two exams that year". For 2017 we do not have the data on taking two exams, and therefore the mean of university registration is underestimated (this applies to year 4, edition 1, year 3 edition 2, and year 2, edition 3). In Column (4), for edition 1 we use as baseline value of the outcome a dummy for self-reported registration at university. The number of observations (individuals) is 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. Ys 1-4 (Avg) reports results for a regression pooling all post-program years. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1) High school enrolled	(2) Class hours per week	(3) Absent last week	(4) Study time outside school (min per day)	(5) Current GPA btw 6 and 8
Treated	0.10***	-1.85**	0.01	-25.78***	-0.02
	(0.04)	(0.86)	(0.05)	(9.67)	(0.05)
ССМ	0.45	26.90	0.25	68.60	0.70
Applications	1,366	649	649	649	649
Applicants	1,272	604	604	604	604

Table 6: Effect of YET on study effort during the program year (Year 0)

Source: Survey.

Note: IV regression of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.1.

(1)	(2)
Enrolled	Total
Any Level	Earnings
Avg	Ys 1-4
0.019*	258.253**
(0.012)	(124.534)
0.028	-2.524
(0.027)	(248.277)
-0.069	320.331
(0.044)	(376.595)
-0.067***	-140.664***
(0.003)	(28.209)
-0.057***	-349.300***
(0.005)	(38.463)
0.506	3308.204
381,139	381,139
90,423	90,423
	Enrolled Any Level 0.019* (0.012) 0.028 (0.027) -0.069 (0.044) -0.067*** (0.003) -0.057*** (0.005) 0.506 381,139

Table 7: Effect of YET by baseline household vulnerability

Notes: two stage least squares regressions where we instrument the YET participation dummy and the interaction with Vulnerable and Highly Vulnerable dummies with a job offer dummy and the corresponding interactions. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Standard errors clustered at the applicant level shown in parenthesis. We report pooled regressions over years 1-4 after the program. Enrolled Any Level: Enrolled in any level of public education. Total earnings: total labor income over 12 months, winsorized at the top 1 percent of positive values and converted into U.S. dollars. Vulnerable: dummy for being in a household receiving a cash transfer (26% of the sample) the month before the program. Highly Vulnerable: dummy for being in a household receiving a cash transfer and a food card (9% of the sample) the month before the program. It is a subset of the Vulnerable category. CCM: control complier mean of the dependent variable among those who are not vulnerable. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Work	Work	No Work	No Work
	and Study	No Study	and Study	No Study
Program Year				
Year 0	0.60***	-0.01	-0.48***	-0.11***
	(0.01)	(0.01)	(0.01)	(0.01)
	[0.27]	[0.13]	[0.48]	[0.11]
Post-Program	Years			
Year 1	0.04***	-0.00	-0.03**	-0.02*
	(0.01)	(0.01)	(0.01)	(0.01)
	[0.37]	[0.24]	[0.28]	[0.12]
Year 2	0.04***	-0.02	-0.01	-0.01
	(0.01)	(0.01)	(0.01)	(0.01)
	[0.30]	[0.37]	[0.17]	[0.16]
Year 3	0.01	-0.00	0.01	-0.02
	(0.02)	(0.02)	(0.01)	(0.01)
	[0.26]	[0.46]	[0.10]	[0.18]
Year 4	-0.01	0.06**	-0.00	-0.05***
	(0.02)	(0.02)	(0.01)	(0.02)
	[0.18]	[0.57]	[0.05]	[0.20]
Ys 1-4 (Avg.)	0.03***	-0.00	-0.01	-0.02**
	(0.01)	(0.01)	(0.01)	(0.01)
	[0.30]	[0.36]	[0.18]	[0.15]
Individuals	90,423	90,423	90,423	90,423
Applications	122,195	122,195	122,195	122,195

Table 8: Effect of YET on working and studying

Notes: Two stage least squares regressions where we instrument the YET participation dummy with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Study: registered at public secondary education, out-of-school programs, tertiary or university. Work: positive income for any month during the year. We code "registered at university" by using two indicators available in the administrative data: "entering a new program that year" or "taking at least two exams that year", for 2017 we do not have the data on taking two exams, and therefore, the mean of university registration is underestimated (this applies to year 4, edition 1, year 3 edition 2, and year 2, edition 3). The number of observations (individuals) is 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. **Ys 1-4 (Avg)** reports results for a regression pooling all post-program years. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(2)	(4)
	(1) Earrin an	(2) Education	(3) Europarison es	(4) Earrin 22
	Earnings	Education	Experience	Earnings
Offered	196.2***	0.142***	0.430***	
Olleleu	(72.97)	(0.023)	(0.013)	
	(12.)1)	(0.023)	(0.013)	
Education				313.81***
				(13.77)
Educ. \times offered				89.92
				(85.69)
Work experience				1,065.6***
				(28.81)
Exp. ²				-123.84***
				(7.91)
Exp. \times offered				-523.36**
•				(227.55)
$Exp.^2 \times offered$				183.25***
				(58.63)
Control mean	3290.7	15.52	0.785	
Application FE				Y
Observations	283,630	283,624	283,630	283,624
Number applicants	90,422	90,420	90,422	90,420

Table 9: Earnings return to education and work experience

Source: Administrative data.

Notes: OLS regressions of the outcome on an indicator for having being offered a YET job. Age is included as control in all columns. In regressions without fixed effects, we also include the usual time-invariant controls (lottery and quota dummies, gender, and poverty indicator). Standard errors clustered at the applicant level shown in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

	(1) in dollars	(2) % of ITT
Earnings effect (ITT): δ	196.2	
Quantity Effect : <i>q</i> Education Experience Price Effect: <i>p</i>	31.4 340.5	16.0 173.5
Education Experience Unexplained	10.4 -236.5 50.4	5.3 -120.5 25.7

Table 10: Contribution of education and work experience to earnings effect

Note: The ITT effect on monthly earnings is decomposed into the sum of quantity and price effects of education and experience, and an unexplained residual contribution. Quantity effects describe the increase in earnings due to program-induced increase in educational attainment and experience, priced as in the control group. Price effects account for changes in the returns to either education or experience between the treated and control youth.

	(1)	(2)	(3)	(4)	(5)	(6)		
		Panel A. Big 5 and grit						
	Open	Conscientious	Extrav Scale 1-5	Agreeable	Neurotic	Grit		
Treated	-0.041 (0.036)	0.046 (0.040)	0.007 (0.057)	-0.026 (0.041)	0.046 (0.068)	-0.049 (0.043)		
CCM Control sd	4.041 0.493	3.792 0.565	3.611 0.734	3.695 0.533	3.419 0.835	3.736 0.579		
			oft Skills Re					
	Finish on time	Adapts fast	Teamwork important Scale 1-5	Punctual	Index (1-4)	Unpunctual Interview		
Treated	0.071 (0.050)	0.067 (0.051)	0.050 (0.050)	-0.002 (0.061)	0.047 (0.038)	-0.010 (0.010)		
CCM Control sd	4.047 0.679	4.006 0.650	4.246 0.677	4.169 0.811	4.117 0.494	$0.0241 \\ 0.149$		
Applications Individuals	1,366 1,272	1,366 1,272	1,366 1,272	1,366 1,272	0.494 1,366 1,272	1,366 1,272		

Table 11: Effects during the program: soft skills

Source: Survey.

Note: IV regression of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Time (hours per week)								
	Working	Studying in or out of school	Commuting	Household chores	Leisure	Sleeping	Eating		
Treated	10.90*** (1.509)	-1.990 (1.811)	2.143** (0.984)	-3.170*** (0.780)	-4.936*** (1.885)	-0.784 (1.402)	-1.443* (0.769)		
CCM	8.759	20.08	5.974	6.404	34.80	58.81	10.72		
Applications Individuals	1,366 1,272	1,366 1,272	1,366 1,272	1,366 1,272	1,366 1,272	1,366 1,272	1,366 1,272		

Table 12: Effects during the program: time use

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. The time-use survey questions are daily, we convert answers into weekly measures. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.1.

Online Appendices

A Appendix Figures and Tables

	(1)	(2)	(3)	(4)		
	YET Participation					
	All Editions	Edition 1	Edition 2	Edition 3		
Won Lottery	0.71***	0.73***	0.70***	0.70***		
j	(0.01)	(0.02)	(0.02)	(0.02)		
Fstat	6,110	2,001	2,077	2,088		
Applications	122,195	46,544	43,661	31,990		
Individuals	90,423	46,008	42,643	30,969		

Table A1: Effect of YET offer on YET participation (first stage)

Notes: OLS regressions of YET participation in year 0 on the offer to take the YET job (winning the lottery). Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Standard errors clustered at the applicant level shown in parenthesis. p<0.01, ** p<0.05, * p<0.1.

Table A2: Effect of YET offer in year 0 on YET participation every year

	(1)	(2)	(3)	(4)	(5)
	Year 0	Year 1	Year 2	Year 3	Year 4
Won Lottery Year 0	0.7115***	-0.0043***	-0.0023***	-0.0008***	-0.0001***
	(0.0103)	(0.0008)	(0.0001)	(0.0001)	(0.0000)
Individuals	121,178	121,178	121,178	121,178	121,178

Notes: OLS regressions of YET participation in year 0 on the offer to take the YET job in the following years. We keep only one application per edition per participant. Standard errors robust to heteroskedasticity shown in parenthesis. p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Total	Months Pos.	Positive	Wages
	earnings	earnings	earnings	-
Program Year				
Year 0	1987.01***	7.39***	0.60***	-36.09***
	(44.96)	(0.09)	(0.01)	(3.12)
	[986.83]	[2.60]	[0.40]	[332.59]
Post-Program	Years			
Year 1	34.41	-0.08	0.04***	1.02
	(83.60)	(0.14)	(0.01)	(8.23)
	[2043.72]	[4.56]	[0.60]	[402.07]
<u> Х</u>	105.04	0.04	0.00	
Year 2	185.94	-0.04	0.02	23.75**
	(114.32) [3104.56]	(0.14) [5.62]	(0.01) [0.67]	(10.37) [500.69]
	[3104.30]	[3.02]	[0.07]	[300.09]
Year 3	391.34**	0.15	0.01	40.60***
	(171.22)	(0.18)	(0.02)	(14.06)
	[4148.54]	[6.43]	[0.72]	[585.68]
Year 4	971.80***	0.49*	0.05**	63.86***
leal 4	(302.19)	(0.26)	(0.02)	(24.57)
	[5187.49]	[7.15]	[0.76]	[669.83]
	[0107.17]	[7:10]	[0.7 0]	[009:00]
Ys 1-4 (Avg.)	255.11**	0.04	0.03**	22.93**
	(108.56)	(0.13)	(0.01)	(9.12)
	[3172.28]	[5.58]	[0.67]	[509.95]
Individuals	90,423	90,423	90,423	48,375
Applications	90,423 122,195	90,423 122,195	90,423 122,195	48,375 58,078
	144,175	144,170	144,175	50,070

Table A3: Effect of YET on labor outcomes - no controls

Notes: Replicates Table 3 without including control variables. The number of observations (applicants) for Columns (1)-(3) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Total	Months Pos.	Positive	Wages
	earnings	earnings	earnings	
Program Year				
Year 0	2001.48***	7.41***	0.60***	-24.81***
	(169.67)	(0.35)	(0.04)	(7.56)
	[972.36]	[2.57]	[0.40]	[321.32]
Post-Program	Years			
Year 1	51.75	-0.06	0.04***	4.59
	(72.26)	(0.13)	(0.01)	(5.06)
	[2026.38]	[4.54]	[0.60]	[398.50]
Year 2	206.56***	-0.02	0.02*	26.39***
1041 2	(68.29)	(0.09)	(0.01)	(6.61)
	[3083.94]	[5.60]	[0.67]	[498.05]
Year 3	432.84***	0.18	0.01	43.08***
ical 5	(154.92)	(0.20)	(0.02)	(9.79)
	[4107.04]	[6.40]	[0.72]	[583.19]
Year 4	1113.19***	0.57**	0.05**	71.86***
	(278.32)	(0.25)	(0.02)	(17.64)
	[5046.11]	[7.07]	[0.75]	[661.82]
Ys 1-4 (Avg.)	285.35***	0.07	0.03**	26.22***
10 1 1 (110 6.)	(96.64)	(0.13)	(0.01)	(6.26)
	[3142.03]	[5.56]	[0.67]	[506.65]
Individuals	90,423	90,423	90,423	48,375
Applications	122,195	122,195	122,195	48,973 58,078
	144,170	144,170	144,170	00,070

Table A4: Effect of YET on labor outcomes - clustering at locality level

Notes: Replicates Table 3, but clustering the standard errors at the locality level. The number of observations (applicants) for Columns (1)-(3) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1) Total	(2) Months Pos.	(3) Positive	(4) Wages
	earnings	earnings	earnings	wages
Program Year	0	0	0	
Year 0	2024.22***	7.45***	0.61***	-25.86**
	(39.60)	(0.08)	(0.01)	(3.05)
	[941.77]	[2.53]	[0.39]	[322.02]
Post-Program	Years			
Year 1	93.06	0.00	0.05***	7.20
	(77.95)	(0.13)	(0.01)	(7.65)
	[1986.74]	[4.44]	[0.59]	[399.17]
Year 2	259.82**	0.07	0.02*	30.10***
	(104.68)	(0.14)	(0.01)	(9.25)
	[2999.47]	[5.48]	[0.66]	[492.47]
Year 3	448.00***	0.22	0.01	41.62***
	(156.20)	(0.17)	(0.02)	(12.85)
	[4026.83]	[6.29]	[0.71]	[581.58]
Year 4	1070.15***	0.55**	0.06***	66.39**`
	(285.23)	(0.25)	(0.02)	(23.06)
	[5079.21]	[7.05]	[0.75]	[669.22]
Ys 1-4 (Avg.)	315.73***	0.13	0.03***	27.46***
	(100.95)	(0.12)	(0.01)	(8.47)
	[3096.54]	[5.46]	[0.65]	[506.13]
Individuals	90,423	90,423	90,423	43,400
Applications	90,423	90,423	90,423	43,400

Table A5: Effect of YET on labor outcomes - one application per participant

Notes: Replicates Table 3, but keeping one application per individual. For participants who were ever offered a job and applied to more than one edition and/or locality, we keep the application for the edition and locality in which they were offered the job. For participants never offered a job, we randomly select one application among all their applications. The number of observations/applicants for Columns (1)-(3) is: 90,423 for Year 0-Year 2, 66,595 for Year 3 and 36,183 for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Total	Months Pos.	Positive	Wages
	earnings	earnings	earnings	
Program Year				
Year 0	1997.85***	7.41***	0.60***	-25.72***
	(43.22)	(0.08)	(0.01)	(3.24)
	[982.45]	[2.58]	[0.40]	[322.76]
Post-Program	Years			
Year 1	65.61	-0.07	0.04^{***}	6.45
	(83.27)	(0.13)	(0.01)	(8.38)
	[2041.06]	[4.55]	[0.60]	[400.36]
Year 2	235.52**	-0.02	0.02	29.81***
Icui 2	(115.18)	(0.14)	(0.01)	(10.61)
	[3104.20]	[5.60]	[0.67]	[500.57]
Year 3	485.00***	0.18	0.01	48.96***
	(174.00)	(0.18)	(0.02)	(14.49)
	[4109.33]	[6.40]	[0.72]	[583.51]
Year 4	1290.51***	0.56**	0.05**	91.13***
	(319.74)	(0.25)	(0.02)	(27.55)
	[4942.75]	[7.08]	[0.75]	[650.23]
Ys 1-4 (Avg.)	330.07***	0.07	0.03***	64.59***
15 1-4 (Avg.)	(92.16)	(0.12)	(0.01)	(24.63)
	[3513.88]	[5.56]	(0.01) [0.67]	[946.54]
	r1	r 1	r 1	[]
Individuals	90,423	90,423	90,423	48,375
Applications	122,195	122,195	122,195	58,078

Table A6: Effect of YET on labor outcomes - no winsorizing

Notes: Replicates Table 3, without winsorizing the dependent variables used in Column (1) and Column (4). Control means are reported in brackets. The number of observations (applicants) for Columns (1)-(3) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Total	Months Pos.	Positive	Wages
	earnings	earnings	earnings	
Program Year				
Year 0	1420.83***	5.26***	0.42***	-19.67***
	(33.79)	(0.08)	(0.01)	(2.46)
	[1121.21]	[3.02]	[0.47]	[327.04]
Post-Program	Years			
Year 1	36.74	-0.04	0.03***	3.29
	(56.79)	(0.09)	(0.01)	(5.68)
	[2121.09]	[4.61]	[0.61]	[409.15]
Year 2	146.63*	-0.01	0.01	18.99***
	(78.46)	(0.10)	(0.01)	(7.19)
	[3087.30]	[5.51]	[0.66]	[501.88]
Year 3	308.83***	0.13	0.01	31.35***
	(118.57)	(0.13)	(0.01)	(9.74)
	[4071.97]	[6.23]	[0.71]	[589.37]
Year 4	812.72***	0.41**	0.04**	53.91***
	(210.12)	(0.19)	(0.02)	(17.34)
	[5148.90]	[6.86]	[0.74]	[682.72]
Ys 1-4 (Avg.)	203.34***	0.05	0.02***	18.98***
(0/	(73.90)	(0.09)	(0.01)	(6.23)
	[3264.50]	[5.56]	[0.67]	[521.43]
Individuals	90,423	90,423	90,423	48,375
Applications	122,195	122,195	122,195	58,078
	,->0	,->0	,->0	

Table A7: Effect of YET on labor outcomes - ITT effects

Notes: Replicates Table 3, but presents ITT effects rather than ToT effects. The number of observations (applicants) for Columns (1)-(3) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)	(5)
	Any	Secondary	University	Tertiary	Out-of-school
	Level	Programs		Non-Univ.	Education
Program Year					
Year 0	0.115***	0.099***	0.010	0.004	0.005
	(0.011)	(0.014)	(0.012)	(0.004)	(0.005)
	[0.760]	[0.523]	[0.209]	[0.018]	[0.024]
Post-Program	Years				
Year 1	0.012	0.023*	-0.003	0.002	-0.006*
	(0.014)	(0.013)	(0.013)	(0.005)	(0.003)
	[0.651]	[0.345]	[0.282]	[0.026]	[0.016]
۲ ۲ - ۲	0.0 0- *	0.000	0.000	0.004	0.000
Year 2	0.027*	0.020	0.002	0.004	0.003
	(0.014)	(0.012)	(0.012)	(0.005)	(0.004)
	[0.476]	[0.237]	[0.216]	[0.029]	[0.007]
Year 3	0.016	0.022	-0.012	0.003	0.005
	(0.017)	(0.014)	(0.012)	(0.005)	(0.004)
	[0.368]	[0.182]	[0.162]	[0.028]	[0.005]
Year 4	-0.001	0.008	-0.007	-0.009	0.008
	(0.020)	(0.018)	(0.009)	(0.007)	(0.005)
	[0.225]	[0.149]	[0.045]	[0.030]	[0.004]
Ys 1-4 (Avg.)	0.017^{*}	0.020**	-0.003	0.002	0.001
13 1-4 (1,8.)	(0.017)	(0.020)	(0.009)	(0.002)	(0.003)
	[0.488]	[0.253]	[0.210]	[0.028]	[0.009]

Table A8: Effect of YET on enrollment in education - no controls

Notes: Replicates Table 5 without including control variables. The number of observations (applicants) is: 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)	(5)
	Any	Secondary	University	Tertiary	Out-of-school
	Level	Programs		Non-Univ.	Education
Program Year	r				
Year 0	0.136***	0.110***	0.020**	0.008**	0.003
	(0.010)	(0.011)	(0.008)	(0.004)	(0.004)
	[0.739]	[0.513]	[0.197]	[0.015]	[0.024]
Post-Program	Years				
Year 1	0.044***	0.035***	0.013	0.003	-0.006**
	(0.013)	(0.012)	(0.010)	(0.004)	(0.003)
	[0.617]	[0.332]	[0.263]	[0.022]	[0.015]
Year 2	0.043***	0.026**	0.008	0.009^{*}	0.000
	(0.013)	(0.011)	(0.010)	(0.005)	(0.002)
	[0.457]	[0.228]	[0.208]	[0.025]	[0.007]
Year 3	0.041***	0.032**	0.002	0.007	0.002
iear 5				(0.007)	
	(0.016) [0.346]	(0.013) [0.172]	(0.011) [0.152]	[0.025]	(0.003) [0.004]
	[0.040]	[0.172]	[0.102]	[0.020]	[0.004]
Year 4	0.013	0.013	-0.002	-0.006	0.010*
	(0.020)	(0.017)	(0.009)	(0.007)	(0.005)
	[0.213]	[0.146]	[0.040]	[0.027]	[0.003]
Ys 1-4 (Avg.)	0.041***	0.028***	0.010	0.006	-0.000
	(0.010)	(0.009)	(0.007)	(0.003)	(0.002)
	[0.461]	[0.244]	[0.195]	[0.024]	[0.009]

Table A9: Effect of YET on enrollment in education - one application per participant

Notes: Replicates Table 5, but keeping one application per individual. For participants who were ever offered a job and applied to more than one edition and/or locality, we keep the application for the edition and locality in which they were offered the job. For participants never offered a job, we randomly select one application among all their applications. The number of observations/applicants is: 90,423 for Year 0-Year 2, 66,595 for Year 3 and 36,183 for Year 4. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)	(5)
	Any	Secondary	University	Tertiary	Out-of-school
	Level	Education		Non-Univ.	Programs
Program Year	•				
Year 0	0.08***	0.07***	0.01	0.00	0.00
	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
	[0.72]	[0.48]	[0.22]	[0.02]	[0.02]
Post-Program	Years				
Year 1	0.01	0.02*	-0.00	0.00	-0.00*
	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
	[0.60]	[0.30]	[0.28]	[0.03]	[0.01]
Year 2	0.02**	0.01*	0.00	0.00	0.00
iear 2					
	(0.01) [0.47]	(0.01) [0.21]	(0.01) [0.23]	(0.00) [0.03]	(0.00) [0.01]
	[0.47]	[0.21]	[0.23]	[0.03]	[0.01]
Year 3	0.01	0.02*	-0.01	0.00	0.00
	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
	[0.37]	[0.17]	[0.18]	[0.03]	[0.01]
No on A	0.01	0.00	0.00	0.01	0.01
Year 4	-0.01	0.00	-0.00	-0.01	0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)
	[0.20]	[0.14]	[0.04]	[0.03]	[0.01]
Ys 1-4 (Avg.)	0.02**	0.01**	0.00	0.00	0.00
× 07	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
	[0.45]	[0.22]	[0.21]	[0.03]	[0.01]

Table A10: Effect of YET on enrollment. ITT effects

Notes: Replicates Table 5, but presents ITT effects rather than ToT effects. The number of observations (individuals) is 122,195 (90,423) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. *** p<0.01, ** p<0.05, * p<0.1.

	(1)	(2)	(3)	(4)
	Total	Total	Total	Total
	earnings	earnings	earnings	earnings
	Industry	Civil	Banking	Low Qual.
Program	n Year			
Year 0	-589.23***	1985.05***	646.73***	-41.01***
	(36.83)	(37.19)	(30.53)	(5.97)
	[871.81]	[37.13]	[9.30]	[52.68]
Post-Pro	ogram Years			
Year 1	34.79	-6.50	60.08**	-38.18***
	(72.59)	(35.67)	(26.47)	(12.80)
	[1675.14]	[202.07]	[39.03]	[95.01]
Year 2	273.20**	45.85	95.68*	16.08
	(122.45)	(70.04)	(51.93)	(26.71)
	[2486.52]	[299.96]	[62.48]	[92.03]
	[2100.02]	[2)).)0]	[02.10]	[92.00]
Year 3	300.29**	36.94	116.24*	-1.46
	(152.12)	(86.63)	(65.13)	(29.63)
	[3331.32]	[440.62]	[80.35]	[130.49]
Year 4	409.21	578.59***	43.96	26.58
	(256.05)	(211.47)	(86.92)	(61.25)
	[4105.23]	[594.97]	[87.36]	[129.02]

Table A11: Effect of YET on earnings by aggregate sector

Notes: Two stage least squares regressions where we instrument the YET participation dummy with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Earnings are winsorized at the top 1 percent of positive values and converted into U.S. dollars. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. Sectors: Industry=Industry and Trade, Civil=Public Sector (excluding public employees in public industries or banks), Banking, Low-qualification jobs (construction, domestic workers and rural workers). The number of observations (individuals) is 122,194 (90,422) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(2)	
	(1)	(2)	(3)	(4)
	Pos.	Pos.	Pos.	Pos.
	earnings	earnings	earnings	earnings
	Industry	Civil	Banking	Low Qual.
Program	Year			
Year 0	-0.12***	0.77***	0.22***	-0.01**
	(0.01)	(0.01)	(0.01)	(0.00)
	[0.39]	[-0.02]	[-0.00]	[0.03]
Post-Prog	gram Years			
Year 1	0.05***	0.00	0.02***	-0.00
	(0.01)	(0.01)	(0.00)	(0.01)
	[0.52]	[0.05]	[0.01]	[0.04]
Year 2	0.05***	-0.02***	0.01	-0.00
	(0.02)	(0.01)	(0.00)	(0.01)
	[0.58]	[0.06]	[0.01]	[0.04]
Year 3	0.02	-0.02**	0.00	0.00
	(0.02)	(0.01)	(0.01)	(0.01)
	[0.62]	[0.07]	[0.02]	[0.04]
Year 4	0.03	0.01	0.00	-0.00
	(0.02)	(0.01)	(0.01)	(0.01)
	[0.64]	[0.09]	[0.02]	[0.05]

Table A12: Effect of YET on positive earnings by aggregate sector

Notes: Two stage least squares regressions where we instrument the YET participation dummy with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. Sectors: Industry=Industry and Trade, Civil=Public Sector (excluding public employees in public industries or banks), Banking, Low Qualif=Construction, Domestic Workers or Rural Workers. The number of observations (individuals) is 122,194 (90,422) for Year 0-Year 2, 90,205 (72,886) for Year 3 and 46,544 (46,008) for Year 4. p<0.01, ** p<0.05, * p<0.1.

	(1) Total Earns.	(2) Pos. Earns.	(3) Wages	(4) Enrolled Any Level
		Avg	Ys 1-4	
Work and Study	477.791*** (172.494)	0.048*** (0.017)	51.617*** (16.968)	0.036** (0.017)
ССМ	2338.297	0.562	473.650	0.507
Observations	381,139	381,139	253,957	381,139
Individuals	90,423	90,423	73,681	90,423

Table A13: Effect of working and studying on main outcomes

Notes: Pooled two stage least squares regressions where we instrument a dummy variable taking the value of one if youth work (positive yearly earnings) and study (enrolled at any level) during the program year with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Standard errors clustered at the applicant level shown in parenthesis and control complier means in brackets. The control complier mean is obtained as the difference between the average outcome for compliers offered a YET job and the estimated local average treatment effect. To recover the former from the data we assume that the average outcome for and the share of always takers is the same among those offered and not offered a YET job. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)	(5)
	Year 0	Year 1	Year 2	Year 3	Year 4
Earnings	1,992***	99.48	261.9**	400.8**	1,116***

(125.0)

0.0299*

(0.0158)

113,391

85290

(185.3)

0.0152

(0.0192)

83,230

68196

(348.8)

-0.0107

(0.0228)

41,720

41420

(92.50)

0.0156

(0.0150)

113,391

85290

(41.70)

0.117***

(0.0117)

113,391

85290

Enrollment

Applications

Applicants

Table A14: Effects of YET - double-reweigthed ever-offer estimator

Notes: This table presents the DREO estimator of Behaghel et al. (2018). The DREO accounts for potential bias due to larger shares of compliers in the offer group of randomized waiting-list designs. The Earnings results compare well to Column (1) of Table 3, the Enrollment results to Column (1) of Table 5.

	(1)	(2)	(3)	(4)	(5)	(6)			
			Panel A. Big	5 and grit					
	Open	Conscientious	Extrav Scale 1-5	Agreeable	Neurotic	Grit			
Employed	0.131*** (0.0483)	0.103** (0.0520)	0.0511 (0.0741)	0.00727 (0.0548)	-0.0645 (0.0867)	0.0634 (0.0573)			
mean of depvar sd of depvar	4.031 0.493	3.809 0.565	3.646 0.734	3.681 0.533	3.429 0.835	3.721 0.579			
		Panel B. Soft Skills Related to Labor Market							
	Finish on time	Adapts fast	Teamwork important Scale 1-5	Punctual	Index (1-4)	Unpunctual Interview			

Table A15: Soft skills and employment in the control gro	oup
--	-----

Source: Survey. Note: OLS regression of soft skills measures on employment

0.0839

(0.0624)

4.068

0.679

664

0.208***

(0.0657)

3.994

0.650

664

-

Employed

mean of depvar

sd of depvar

Individuals

Note: OLS regression of soft skills measures on employment status in the control group. Standard errors clustered at the individual level shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

0.106

(0.0660)

4.248

0.677

664

-0.0256

(0.0761)

4.215

0.811

664

0.0930*

(0.0493)

4.131

0.494

664

0.0229

(0.0158)

0.0226

0.149

664

	(1) Vulnerable	(2) Highly Vulnerable	(3) Vulnerable	(4) Highly Vulnerable
	Yea	ar 0	Avg Y	ís 1-4
Treated (T)	-0.005	-0.000	0.002	-0.007***
T * Vulnerable	(0.005)	(0.003)	(0.007)	(0.002)
	-0.189***	-0.004	-0.046	-0.001
T * H. Vulnerable	(0.032)	(0.015)	(0.029)	(0.013)
	0.057	-0.100**	-0.029	0.010
Vulnerable	(0.056)	(0.048)	(0.056)	(0.049)
	0.711***	0.062***	0.412***	0.054^{***}
Highly Vulnerable	(0.003)	(0.002)	(0.004)	(0.002)
	0.120***	0.796***	0.140***	0.351***
	(0.004)	(0.004)	(0.006)	(0.005)
CCM	0.023	0.002	0.040	0.008
Observations	122,195	122,195	381,139	381,139
Individuals	90,423	90,423	90,423	90,423

Table A16: Effect of YET on social transfers, by baseline household vulnerability

Notes: two stage least squares regressions where we instrument the YET participation dummy, and the interaction with Vulnerable and Highly Vulnerable dummies with a job offer dummy and the corresponding interactions. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age below 18 at application, baseline earnings and dummies for baseline education type. Standard errors clustered at the applicant level shown in parenthesis. Columns (3)-(4) report the results from pooled regressions over years 1-4 after the program, while for columns (1)-(2) we conduct a cross-sectional regression for the year of the program. **Vulnerable**: dummy for being in a household receiving a cash transfer (26% of the sample) either the month before the program (used as independent variable), or for the month of April in the corresponding year after the program (dependent variable) **Highly Vulnerable**: dummy for being in a household receiving a cash transfer and a food card (9% of the sample) either the month before the program (used as independent variable), or at any month for the corresponding year after the program (dependent variable), or at any month for the corresponding year after the program (dependent variable), or at any month for the corresponding year after the program (dependent variable). It is a subset of the Vulnerable category. **CCM**: control complier mean of the dependent variable among those who are not vulnerable. *** p < 0.01, ** p < 0.05, * p < 0.1.

	(1)	(2)	(3)	(4)
	Expected proba	bility (in%) of find	ling a job whei	n one finishes
	3 years of high school	6 years of high school	tertiary education	university
Treated	-2.156	2.864*	0.753	-0.497
	(1.478)	(1.515)	(1.250)	(0.934)
ССМ	42.22	70.60	85.33	94.30
Applications	1,366	1,366	1,366	1,366
Applicants	1272	1272	1272	1272

Table A17: Effects during the program: expected returns to education

Source: Survey.

Note: IV estimates of Eq. (1). The dependent variable in Column (1) is the answer to the following survey question: "What is the probability of finding a job when one finishes the first 3 years of high school?". Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.1.

B Computation of the share of summer jobs over total employment while in school

In this Section, we explain how we compute the contribution of summer jobs to overall employment of teenagers enrolled in school for the US and Uruguay.

Summer jobs have been the focus of recent papers in the US. We estimate the incidence of summer jobs on overall employment of 16-19 year-old teenagers enrolled in school. Summer jobs are not easy to isolate from aggregate employment and education statistics. If we define summer jobs as jobs starting and ending within the summer, we need detailed data on labor market transitions and on enrollment transitions to identify them. Instead, we focus on summer employment (June-July-August in the US), which is a larger category that includes summer jobs. Some summer employment stars before the summer or ends after it.

We use aggregate statistics from the 2017 Current Population Survey. From Table A-16 published in the website of the Bureau of Labor and Statistics,⁵³ we compute the employment rate of teenagers (16-19) enrolled in school, excluding summer months (June-July-August), and we obtain a share of 23%. The employment rate of enrolled teenagers remains stable over the summer months, probably because of a composition effect: the enrollment rate during the summer drops from 83% to 52%. As teenagers enrolled during the year who take summer jobs probably declare themselves as non-enrolled over the summer, we need to correct our estimates of summer employment for teenagers who regularly attend school. We then assume that the entire summer increase in jobs held by teenagers who report themselves as non-enrolled over the summer of the employment rate of the enrolled in non-summer months. A priori, this yields an upper bound estimate of the employment then contributes to 31% of yearly employment (= 0.31/(0.31 + 3 * 0.23)). This number is the one reported in the introduction.

We also propose an alternative and less conservative estimate of summer jobs contribution. With aggregate monthly data, we assume that summer jobs correspond to the net increase in jobs over the summer months. As the employment rate increases from 23% to 31%, the net increase is 8 percentage points. Then we obtain a

⁵³Tables are available at: https://www.bls.gov/opub/ee/2017/cps/monthly.htm

yearly contribution of summer jobs of 8% (= (0.31 - 0.23)/(0.31 + 3 * 0.23)).

We compute the contribution of summer employment in Uruguay using our administrative data on applicants. We take the ratio between the total number of youth working in summer months (Dec-Feb) over the total number of youth who work from the first July to the next June after they apply to the program. This calculation gives us a share of summer jobs equal to 28%, which is constant for all cohorts of the program (2012-2015).

C Program Youth vs Youth Population

Table C1 describes selection into program application. The Population Census conducted in Uruguay in 2011 registered 255,338 youth aged 16 to 20 (Column 1). Only 132,968 (54 percent) of them were attending school (Column 2). If we consider this number as the population eligible to participate in the program, then we have an application rate of 34.6 percent in the 2012 edition of the program. Two caveats are in order with this estimate. First, candidates could register into school in 2012 in order to apply to the program, which means that we overestimate the application rate. Second, some students in Column (2) worked formally for more than 90 days, which would lead us to underestimate the application rate. The second bias is probably moderate though, as only 7 percent of youth attending school earned positive income in a formal job (contributing to social security). In Column (3), we report the characteristics of the population of applicants - as declared on their application forms - to the 2012 edition.

Columns (2) and (3) allow to compare the characteristics of the eligible population and of the applicants, which are overall quite similar. Women and youth aged 19-20 are just slightly over-represented in the applicants' sample. We also see a share of applications in Montevideo larger than the fraction of people living there, which can be linked to the fact that participants are willing to move to the capital in order to work there. Finally, the share of youth coming from highly vulnerable households (those receiving a social food card) is similar between the applicant pool and the general population.

Column (4) presents the characteristics of the average applicants across the first three editions of the program, our main sample, we see a slight increase in the

	(1)	(2)	(3)	(4)
VARIABLES	Census	Census	YET	YET
	All	Studying	First Ed.	Ed. 1-3
	2011	2011	2012	2012-2014
Female	0.49	0.55	0.58	0.60
Age 16-18	0.62	0.72	0.70	0.72
Age 19-20	0.38	0.28	0.30	0.28
Montevideo	0.38	0.42	0.52	0.49
Enrolled	0.54	1.00	1.00	1.00
Highly Vulnerable Household *	0.12	0.08	0.09	0.09
Worked formally last month *	0.14	0.07	0.06	0.07
Individuals	255,338	132,968	46,008	90,423
Applications	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	46,544	122,195

Table C1: Characteristics of youth in Uruguay

Source: Census 2011, YET Application Forms and Continuous Household Survey 2013 (ECH). Notes: **Census Studying**: sample restricted to those who reported being currently attending an educational institution. **Montevideo**: based on locality of residence in Columns (1) and (2), and on locality for which they submitted the application in Columns (3) and (4). **Enrolled**: currently attending an educational institution. We impute a value of one to YET participants since everyone reported being enrolled at the application stage. **Highly Vulnerable Household**: respondent lives in a household receiving TUS food card. **Worked Formally Last Month**: for Columns (1) and (2) we use an indicator for reporting positive income in the month before the survey in a job that contributes to social security (formal). For Columns (3) and (4) we use an indicator for having positive income in the social security data the month before the application to the program. * Values reported in Columns (1) and (2) are from the 2013 household survey (ECH) since information is not available in the census.

share of women, and younger teenagers in comparison to the first edition, but overall the composition of applicants does not vary much over time and it is not very different from the one of the general population of this age.

D Further evidence from the in-house survey

In this section, we describe in greater detail what happens during the program year, more precisely just before the program jobs end (9-12 months after the lottery). For some dimensions, such as education and labor market outcomes, we then document the exact content of the program, and compliance to the program rules.

Table D1 shows that, among survey respondents, the control group and the group of youth receiving a program job offer are overall balanced on baseline characteristics.

Table D2 reports the effect of being offered a program job on employment, educational enrollment and total income. This Table draws the big picture of the treatment group situation around the end of the program. Overall the estimates are in line with the evidence from administrative data at the same horizon. By the end of the program, the treatment group still experiences a significant increase in employment rates by 49 p.p out of a mean of 23 percent in the control group. The enrollment rate in education is also significantly higher in the treatment group by 9 p.p. (while 3 out of 4 youth are enrolled in education in the control group). Beyond marginal distributions, we obtain a significant increase in the share of students working and studying, the main first-stage objective of the program. Conversely, the program decreases the share of young youth who are neither in employment, education, or training (NEETs) by 12 p.p. This share of socially excluded young people is reduced by more than half at the end of the program. Column (5) of Table D2 reports the treatment effect on total monthly income (converted in dollars at the exchange rate at the time of the survey). Treated students earn \$147 more on average. The program more than doubles the monthly income of youth.

Tables D3 to D5 describe the employment experiences of program applicants: their employers, their jobs and their tasks, respectively. The estimation samples are restricted to employed youth, so results can be affected by selection and should be interpreted as descriptive evidence. Consistent with the program description above and with its objectives, employment is almost exclusively formal in the treatment group, while almost one third of the control group is employed in informal jobs (defined as those that do not contribute to social security). Column (2) of Table D3 shows that 94% of treated teenagers report being employed in the public sector,

Table D1: Balance checks between treatment and control groups - respondents to the survey of the 5th edition

	(1)	(2)	(3)	(4)	(5)
	Cont	trol	Offered		
	Mean	sd	Mean	sd	p^+
Observations	666		703		
p-value F test*					0.115
Panel A. Demographics					
Female	0.65	0.48	0.64	0.48	0.39
Age	17.71	1.40	17.84	1.42	0.16
Number of kids	0.03	0.17	0.02	0.16	0.60
Father completed high school	0.29	0.45	0.32	0.47	0.52
Mother completed high school	0.42	0.49	0.43	0.49	0.70
More than 10 books at home	0.48	0.50	0.50	0.50	0.69
Panel B. Education and Social Programs					
School: hours per day	5.48	1.66	5.47	1.45	0.84
School: morning shift	0.41	0.49	0.49	0.50	0.02
School: afternoon shift	0.42	0.49	0.36	0.48	0.02
School: evening shift	0.17	0.37	0.15	0.36	0.97
School: Secondary Academic	0.60	0.49	0.54	0.50	0.06
School: Secondary Technical	0.25	0.43	0.26	0.44	0.64
School: Non-Formal Education	0.02	0.12	0.02	0.15	0.77
School: Teacher's College	0.01	0.09	0.02	0.12	0.20
School: Tertiary	0.01	0.10	0.03	0.17	0.00
School: University	0.11	0.32	0.13	0.34	0.57
Enrolled the year before the program (Sec or Tert.)	0.93	0.25	0.95	0.22	0.22
Repeated grade once in primary school	0.12	0.33	0.14	0.35	0.59
Household Receives Cash Transfer	0.19	0.39	0.16	0.37	0.56
Household Recipient of Food Card	0.12	0.33	0.10	0.30	0.27

Source: Survey and administrative data on applications.

Note: + p-value reported in column (5) is obtained from a regression of each variable on being selected in the lottery with clustered standard errors at the applicant level and controlling for locality dummies and number of applications. *p-value corresponding to the joint-hypothesis test in a regression of the treatment indicator on all variables presented in the table, the regression also controls for edition dummies, locality dummies and number of applications.

	(1) Employed	(2) Study	(3) Work & Study	(4) NEET	(5) Tot. income month, \$
Treated	0.488***	0.0868***	0.452***	-0.123***	147.4***
	(0.035)	(0.029)	(0.034)	(0.024)	(15.02)
ССМ	0.231	0.759	0.179	0.190	112.8
Applications	1,366	1,366	1,366	1,366	1,366
Individuals	1,272	1,272	1,272	1,272	1,272

Table D2: Effects during the program: employment and education status.

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses. CCM: Control Complier Mean. *** p < 0.01, ** p < 0.05, * p < 0.1.

while in the control group less than 1 out of 5 applicants are working in that sector. This is consistent with the list of employers offering jobs on the program website. Actually, survey respondents in the treatment group declare that their main employers are: the National Bank (22 percent), the state-owned electricity company (19 percent), the state-owned telephone company (9 percent) and the state-owned oil and gas company (6 percent). These four largest employers hire 56 percent of the treatment group. Similarly, treated employees are significantly more likely to work in larger firms (larger than 50 employees), in the manufacturing industry, in the financial services and public services (industry classification in the survey is more detailed than in the administrative data). In a nutshell, the program crowds out small, informal employers from the retail trade industry, the main employer type in the control group.

Table D4 shows that treated youth are more satisfied with their job: there is a statistically significant increase by two thirds of a standard deviation in our job satisfaction index. Column (2) of Table D4 also shows that the share of part-time work (less than 29 hours per week) is significantly higher in the treatment group. This translates into a lower total monthly wage. More importantly, (log) hourly wages paid to treated students are significantly higher than those paid to control group workers, this amounts to an increase in levels of 16 percent over the control mean.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Formal	Public	Small firm	Manuf.	Retail	Fin.	Public
		Employer	< 50		Trade	services	services
Treated	0.279***	0.769***	-0.413***	0.208***	-0.425***	0.353***	0.090**
	(0.042)	(0.049)	(0.055)	(0.035)	(0.053)	(0.033)	(0.039)
ССМ	0.691	0.168	0.620	0.076	0.452	-0.014	0.117
Observations	641	641	631	641	641	641	641
Individuals	587	587	577	587	587	587	587

Table D3: Effects during the program: employers type

Source: Survey.

Note: OLS estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p<0.01, ** p<0.05, * p<0.1.

Industry classification differs in the survey and in the administrative data. For example, state-owned companies producing electricity are classified in the manufacturing industry in the survey, and in the civil sector in the administrative data.

	(1)	(2)	(3)	(4)
	Job	Part-time	Total	Hourly
	satisf.	work	wages	wage
	(scale 1-5)	< 29 hours	month, dollars	log, dollars
Treated	0.686***	0.324***	-44.38**	0.160***
	(0.115)	(0.0594)	(19.23)	(0.0583)
ССМ	3.646	0.327	364.6	2.325
Control sd	1.062	0.474	209	0.653
Applications	641	641	641	627
Applications	-		-	
Individuals	587	587	587	573

Table D4: Effects during the program: jobs type

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p<0.01, ** p<0.05, * p<0.1.

In Table D5, we describe the occupations and tasks performed by employed youth. Consistent with the industries of the program employers, treated youth are much more likely to work as clerks: 93 percent of treated youth are clerks compared to 43 percent in the control group. Consequently, treated youth are much more likely to read, write and use computers on a daily basis in the workplace (Columns 2 to 4). Treated youth are less likely to measure weights or distances during their workday (Column 5). They declare that their work is less physically demanding (Column 6): we see a decrease in half a standard deviation in an index capturing how physically demanding the job is.⁵⁴ Surprisingly, treated employees declare that they have less frequent interactions with their colleagues, this could be due to the fact that they work in larger firms. Although their job is closer to office work, they might be less likely to work in teams (Column 7).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Clerical			Computers	Measuring	Physically	Freq.
	occupation	Reading	Writing	every day	weights,dist.	demand.	meetings
						(scale 1-10)	colleagues
Treated	0.493***	0.275***	0.184***	0.470***	-0.137***	-1.509***	-0.195***
	(0.054)	(0.056)	(0.056)	(0.054)	(0.048)	(0.294)	(0.056)
ССМ	0.435	0.562	0.542	0.381	0.252	4.367	0.392
Control sd	0.493	0.500	0.498	0.490	0.448	2.785	0.492
Applications	641	641	641	641	641	641	641
Applicants	587	587	587	587	587	587	587

Table D5: Effects during the program: occupation & tasks

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.1.

⁵⁴Table D6 provides further details on the job tasks: treated youth read more pages and are less likely to carry heavy loads.

	(1)	(2)	(3)
	Pages read	Pages written	Carry > 25 kg
	0.05544	2 (22	
Treated	3.257**	0.609	-0.150***
	(1.316)	(0.583)	(0.043)
ССМ	4.987	1.436	0.235
Control sd	11.88	4.457	0.439
Observations	641	641	641
Applications	587	587	587

Table D6: Effects during the program: more details on tasks of employed youths

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Standard errors clustered at the individual level shown in parentheses.*** p<0.01, ** p<0.05, * p<0.1.